list 10 sequences
assignment Level : Introductive
chat_bubble_outline Language : English
card_giftcard 80 points
Users' reviews
-
starstarstarstarstar

Key information

credit_card Free access
verified_user Free certificate
timer 10 hours in total

About the content

Volcanic eruptions are a powerful demonstration of the energy of the Earth´s interior. A materials-based understanding of the evolution of erupting systems provides a quantitative physico-chemical description of the nature of lava and magma and the role of experiments in quantifying the eruptive process.

more_horiz Read more
more_horiz Read less
dns

Syllabus

Week 1: The Earth as a living planet: The five big extinctions during Phanerozoic times; Volcanic fatalities; Volcanism in the Solar system; Volcanism on Earth; The essence of volcanism;

Week 2: The Earth as a living planet: Volcanoes on Earth: magnitudes and landforms; Explosive and effusive volcanism; Videos of Merapi and Etna volcanoes; Volcanic materials; mineralogy and fragment classification; Chemical and mineralogical classification; 

Week 3: Structure of molten silicates: Chemical composition; Stability and geological properties (an overview on viscosity/viscoelasticity; density, expansivity/compressibility; Volatiles solubilities, diffusivities, heat capacity, redox equilibria); 

Week 4: Dynamics of molten silicates: Glass and molten silicates; Molar heat, Enthalpy: Strain vs. time; Cooling vs. heating paths; Maxwell relations for viscoelasticity; Resistivity and viscosity; Relaxation times and implications for experiments;
 
Week 5: Relaxation in silicate melts: Longitudinal vs. shear viscosity; Glass transition; Quench rate, relaxation time and viscosity; The role of water content, water speciation, pressure and temperature; Details of water speciation from experimental data;

Week 6: Diffusion in silicate melts: water content and water speciation  (cont.); Diffusion in contrasting silicate melts; The role of temperature; Comparing diffusion of different elements; The role of pressure; Simplified Stokes-Einstein and Eyring equations; Relaxation times  (comparison between different compositions at different temperatures);

Week 7: Expansivity and compressibility in silicate melts: Partial molar volumes; Density: equation of state for liquid silicates; Density determinations and calculations above and below glass transition; Density models for anhydrous granitic system;

Week 8: Viscosity of silicate melts: Calibration of reaction kinetics for speciation (e.g. H2O); Prediction of glass transition: temperature, thermodynamic and kinetic; Methods of viscosity measurements; Arrhenian and non-Arrhenian plots; Viscosity-temperature relationships; Peraluminous and metaluminous (calcalkaline) melts; Adam Gibbs model: entropy of mixing; Multicomponent models with water and fluorine;

Week 9: Fragmentation of magmas: The role of crystals and bubbles; Bubble growth; Structural relaxation; Non-Newtonian effects; Viscous heating; Flow or blow: the volcanic dilemma; Fragmentation velocities; Experimental Volcanology at the LMU; Videos from the labs and scientific staff;

Week 10: Volcanic hazards: how to get information from volcanological maps; Impact and relevance; Volcanoes and Mankind; Hazards mitigation; Examples from the Vesuvius case; Video from Vesuvius with animations;
record_voice_over

Instructors

  • Donald Dingwell - Department of Earth and Environmental Sciences
store

Content designer

Ludwig-Maximilians-Universität München (LMU)
As one of Europe's leading research universities, LMU Munich is committed to the highest international standards of excellence in research and teaching. Building on its 500-year-tradition of scholarship, LMU covers a broad spectrum of disciplines, ranging from the humanities and cultural studies through law, economics and social studies to medicine and the sciences.
assistant

Platform

Coursera

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California. 

Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5