link Origem: www.coursera.org
list 11 sequencias
assignment Nível: Introdutório
chat_bubble_outline Idioma : Inglês
card_giftcard 1.320 pontos
Avaliações
-
starstarstarstarstar
Ver avaliação

Informações principais

credit_card Free accesso
verified_user Certificado gratuito
timer 165 total de horas

Sobre o conteúdo

In this class, you will learn the basics of the PGM representation and how to construct them, using both human knowledge and machine learning techniques.

more_horiz Ler mais
more_horiz Ler menos
dns

Programa de estudos

Topics covered include:

  1. The Bayesian network and Markov network representation, including extensions for reasoning over domains that change over time and over domains with a variable number of entities
  2. Reasoning and inference methods, including exact inference (variable elimination, clique trees) and approximate inference (belief propagation message passing, Markov chain Monte Carlo methods)
  3. Learning parameters and structure in PGMs
  4. Using a PGM for decision making under uncertainty.

There will be short weekly review quizzes and programming assignments (Octave/Matlab) focusing on case studies and applications of PGMs to real-world problems:

  1. Credit Scoring and Factors
  2. Modeling Genetic Inheritance and Disease
  3. Markov Networks and Optical Character Recognition (OCR)
  4. Inference: Belief Propagation
  5. Markov Chain Monte Carlo and Image Segmentation
  6. Decision Theory: Arrhythmogenic Right Ventricular Dysplasia
  7. Conditional Random Field Learning for OCR
  8. Structure Learning for Identifying Skeleton Structure
  9. Human Action Recognition with Kinect

To prepare for the class in advance, you may consider reading through the following sections of the textbook (discount code DKPGM12) by Daphne and Nir Friedman:

  1. Introduction and Overview. Chapters 1, 2.1.1 - 2.1.4, 4.2.1.
  2. Bayesian Network Fundamentals. Chapters 3.1 - 3.3.
  3. Markov Network Fundamentals. Chapters 4.1, 4.2.2, 4.3.1, 4.4, 4.6.1.
  4. Structured CPDs. Chapters 5.1 - 5.5.
  5. Template Models. Chapters 6.1 - 6.4.1.

These will be covered in the first two weeks of the online class.

The slides for the whole class can be found here.

record_voice_over

Instrutores

  • Daphne Koller - School of Engineering
store

Criador do conteúdo

Stanford University

A Leland Stanford Junior University, mais conhecida como Stanford University, é uma universidade privada americana situada em Silicon Valley, a sul de São Francisco.

O seu lema é "Die Luft der Freiheit weht", que significa "O vento da liberdade sopra".

Classificada entre as melhores universidades do mundo na maioria dos rankings internacionais, goza de grande prestígio.

assistant

Plataforma

Coursera

A Coursera é uma empresa digital que oferece um curso on-line massivo e aberto, fundado pelos professores de computação Andrew Ng e Daphne Koller Stanford University, localizado em Mountain View, Califórnia.

O Coursera trabalha com as melhores universidades e organizações para disponibilizar alguns dos seus cursos on-line e oferece cursos em várias disciplinas, incluindo: física, engenharia, humanidades, medicina, biologia, ciências sociais, matemática, negócios, ciência da computação, marketing digital, ciência de dados. e outros assuntos.Cours

Você é o criador deste MOOC?
Qual a sua apinião sobre esse recurso?
Conteúdo
5/5
Platforma
5/5
Didática
5/5