Making Better Group Decisions: Voting, Judgement Aggregation and Fair Division

课程
en
英语
7 时
此内容评级为 0/5
来源
  • 来自www.coursera.org
状况
  • 自定进度
  • 免费获取
  • 免费证书
更多信息
  • 7 序列
  • 等级 介绍

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Learn more

课程详情

教学大纲

Week 1:  Voting Methods
    The Voting Problem
    A Quick Introduction to Voting Methods (e.g., Plurality Rule, Borda Count,  
          Plurality with Runoff, The Hare System, Approval Voting)    
    Preferences
    The Condorcet Paradox
    How Likely is the Condorcet Paradox?
    Condorcet Consistent Voting Methods
    Approval Voting
    Combining Approval and Preference
    Voting by Grading

Week 2: Voting Paradoxes
    Choosing How to Choose
    Condorcet's Other Paradox
    Should the Condorcet Winner be Elected?
    Failures of Monotonicity
    Multiple-Districts Paradox
    Spoiler Candidates and Failures of Independence
    Failures of Unanimity
    Optimal Decisions or Finding Compromise?
    Finding a Social Ranking vs. Finding a Winner

Week 3: Characterizing Voting Methods
    Classifying Voting Methods
    The Social Choice Model
    Anonymity, Neutrality and Unanimity
    Characterizing Majority Rule
    Characterizing Voting Methods
    Five Characterization Results
    Distance-Based Characterizations of Voting Methods
    Arrow's Theorem
    Proof of Arrow's Theorem
    Variants of Arrow's Theorem

Week 4: Topics in Social Choice Theory
    Introductory Remarks
    Domain Restrictions: Single-Peakedness
    Sen’s Value Restriction
    Strategic Voting
    Manipulating Voting Methods
    Lifting Preferences
    The Gibbard-Satterthwaite Theorem
    Sen's Liberal Paradox

Week 5: Aggregating Judgements
    Voting in Combinatorial Domains
    Anscombe's Paradox
    Multiple Elections Paradox
    The Condorcet Jury Theorem
    Paradoxes of Judgement Aggregation
    The Judgement Aggregation Model
    Properties of Aggregation Methods
    Impossibility Results in Judgement Aggregation
    Proof of the Impossibility Theorem(s)

Week 6: Fair Division 
    Introduction to Fair Division
    Fairness Criteria
    Efficient and Envy-Free Divisions
    Finding an Efficient and Envy Free Division
    Help the Worst Off or Avoid Envy?
    The Adjusted Winner Procedure
    Manipulating the Adjusted Winner Outcome

Week 7:  Cake-Cutting Algorithms
   The Cake Cutting Problem
   Cut and Choose
   Equitable and Envy-Free Proocedures
   Proportional Procedures
   The Stromquist Procedure
   The Selfridge-Conway Procedure
   Concluding Remarks

先决条件

没有。

讲师

  • - Philosophy

编辑

马里兰大学是马里兰州的旗舰大学,也是全美领先的公立研究型大学之一。该大学在研究、创业和创新方面处于世界领先地位,拥有 37,000 多名学生、9,000 多名教职员工和 250 个学术项目。

该校教师中有三位诺贝尔奖获得者、三位普利策奖获得者、47 位国家科学院院士和众多富布赖特学者。该校的运营预算为 18 亿美元,每年从外部筹集 5 亿美元的研究经费,最近还完成了 10 亿美元的筹资活动。

平台

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。

Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。

此内容评级为 4.5/5
(没有评论)

您覺得這門課如何?

完成这个资源,写一篇评论