- 来自www.coursera.org
Making Better Group Decisions: Voting, Judgement Aggregation and Fair Division
课程
en
英语
7 时
此内容评级为 4.5/5
- 自定进度
- 免费获取
- 免费证书
- 7 序列
- 等级 介绍
课程详情
教学大纲
Week 1: Voting Methods
The Voting Problem
A Quick Introduction to Voting Methods (e.g., Plurality Rule, Borda Count,
Plurality with Runoff, The Hare System, Approval Voting)
Plurality with Runoff, The Hare System, Approval Voting)
Preferences
The Condorcet Paradox
How Likely is the Condorcet Paradox?
Condorcet Consistent Voting Methods
Approval Voting
Combining Approval and Preference
Voting by Grading
Week 2: Voting Paradoxes
Choosing How to Choose
Condorcet's Other Paradox
Should the Condorcet Winner be Elected?
Failures of Monotonicity
Multiple-Districts Paradox
Spoiler Candidates and Failures of Independence
Failures of Unanimity
Optimal Decisions or Finding Compromise?
Finding a Social Ranking vs. Finding a Winner
Week 3: Characterizing Voting Methods
Classifying Voting Methods
The Social Choice Model
Anonymity, Neutrality and Unanimity
Characterizing Majority Rule
Characterizing Voting Methods
Five Characterization Results
Distance-Based Characterizations of Voting Methods
Arrow's Theorem
Proof of Arrow's Theorem
Variants of Arrow's Theorem
Week 4: Topics in Social Choice Theory
Introductory Remarks
Domain Restrictions: Single-Peakedness
Sen’s Value Restriction
Strategic Voting
Manipulating Voting Methods
Lifting Preferences
The Gibbard-Satterthwaite Theorem
Sen's Liberal Paradox
Week 5: Aggregating Judgements
Voting in Combinatorial Domains
Anscombe's Paradox
Multiple Elections Paradox
The Condorcet Jury Theorem
Paradoxes of Judgement Aggregation
The Judgement Aggregation Model
Properties of Aggregation Methods
Impossibility Results in Judgement Aggregation
Proof of the Impossibility Theorem(s)
Week 6: Fair Division
Introduction to Fair Division
Fairness Criteria
Efficient and Envy-Free Divisions
Finding an Efficient and Envy Free Division
Help the Worst Off or Avoid Envy?
The Adjusted Winner Procedure
Manipulating the Adjusted Winner Outcome
Week 7: Cake-Cutting Algorithms
The Cake Cutting Problem
Cut and Choose
Equitable and Envy-Free Proocedures
Proportional Procedures
The Stromquist Procedure
The Selfridge-Conway Procedure
Concluding Remarks
先决条件
没有。
讲师
- - Philosophy
编辑
马里兰大学是马里兰州的旗舰大学,也是全美领先的公立研究型大学之一。该大学在研究、创业和创新方面处于世界领先地位,拥有 37,000 多名学生、9,000 多名教职员工和 250 个学术项目。
该校教师中有三位诺贝尔奖获得者、三位普利策奖获得者、47 位国家科学院院士和众多富布赖特学者。该校的运营预算为 18 亿美元,每年从外部筹集 5 亿美元的研究经费,最近还完成了 10 亿美元的筹资活动。
平台
Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。
Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。
完成这个资源,写一篇评论