date_range 开始2017年3月20日
event_note 结束于2017年5月1日
list 6个序列
assignment 等级:入门
label 计算机科学
chat_bubble_outline 语言 : 英语
card_giftcard 18点
- /5
评论
0 条点评

关键信息

credit_card 免费进入
timer 总共30个小时

关于内容

This course will cover the major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort. Detailed analysis of text data requires understanding of natural language text, which is known to be a difficult task for computers. However, a number of statistical approaches have been shown to work well for the "shallow" but robust analysis of text data for pattern finding and knowledge discovery. You will learn the basic concepts, principles, and major algorithms in text mining and their potential applications.

more_horiz 查看更多
more_horiz 收起
dns

课程大纲

  • Week 1 - Orientation
    You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.
  • Week 1 - Week 1
    During this module, you will learn the overall course design, an overview of natural language processing techniques and text representation, which are the foundation for all kinds of text-mining applications, and word association mining with a particular focus...
  • Week 2 - Week 2
    During this module, you will learn more about word association mining with a particular focus on mining the other basic form of word association (i.e., syntagmatic relations), and start learning topic analysis with a focus on techniques for mining one topic fr...
  • Week 3 - Week 3
    During this module, you will learn topic analysis in depth, including mixture models and how they work, Expectation-Maximization (EM) algorithm and how it can be used to estimate parameters of a mixture model, the basic topic model, Probabilistic Latent Semant...
  • Week 4 - Week 4
    During this module, you will learn text clustering, including the basic concepts, main clustering techniques, including probabilistic approaches and similarity-based approaches, and how to evaluate text clustering. You will also start learning text categorizat...
  • Week 5 - Week 5
    During this module, you will continue learning about various methods for text categorization, including multiple methods classified under discriminative classifiers, and you will also learn sentiment analysis and opinion mining, including a detailed introducti...
  • Week 6 - Week 6
    During this module, you will continue learning about sentiment analysis and opinion mining with a focus on Latent Aspect Rating Analysis (LARA), and you will learn about techniques for joint mining of text and non-text data, including contextual text mining te...
record_voice_over

教师

  • ChengXiang Zhai, Professor
    Department of Computer Science
store

内容设计师

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs.
assistant

平台

Coursera est une entreprise numérique proposant des formation en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

您对这门课的评价是 ?
内容
0/5
平台
0/5
动画
0/5