评论
关键信息
credit_card
免费进入
verified_user
免费证书
timer
45小时总数
关于内容
This course will use social network analysis, both its theory and computational tools, to make sense of the social and information networks that have been fueled and rendered accessible by the internet.
more_horiz
查看更多
more_horiz
收起
dns
课程大纲
Week 1: What are networks and what use is it to study them?
Concepts: nodes, edges, adjacency matrix, one and two-mode networks, node degree
Activity: Upload a social network (e.g. your Facebook social network into Gephi and visualize it ).
Week 2: Random network models: Erdos-Renyi and Barabasi-Albert
Concepts: connected components, giant component, average shortest path, diameter, breadth-first search, preferential attachment
Activities: Create random networks, calculate component distribution, average shortest path, evaluate impact of structure on ability of information to diffuse
Week 3: Network centrality
Concepts: betweenness, closeness, eigenvector centrality (+ PageRank), network centralization
Activities: calculate and interpret node centrality for real-world networks (your Facebook graph, the Enron corporate email network, Twitter networks, etc.)
Week 4: Community
Concepts: clustering, community structure, modularity, overlapping communities
Activities: detect and interpret disjoint and overlapping communities in a variety of networks (scientific collaborations, political blogs, cooking ingredients, etc.)
Week 5: Small world network models, optimization, strategic network formation and search
Concepts: small worlds, geographic networks, decentralized search
Activity: Evaluate whether several real-world networks exhibit small world properties, simulate decentralized search on different topologies, evaluate effect of small-world topology on information diffusion.
Week 6: Contagion, opinion formation, coordination and cooperation
Concepts: simple contagion, threshold models, opinion formation
Activity: Evaluate via simulation the impact of network structure on the above processes
Week 7: Cool and unusual applications of SNA
Hidalgo et al. : Predicting economic development using product space networks (which countries produce which products)
Ahn et al., and Teng et al.: Learning about cooking from ingredient and flavor networks
Lusseau et al.: Social networks of dolphins
Activity: hands-on exploration of these networks using concepts learned earlier in the course
Week 8: SNA and online social networks
Concepts: how services such as Facebook, LinkedIn, Twitter, CouchSurfing, etc. are using SNA to understand their users and improve their functionality
Activity: read recent research by and based on these services and learn how SNA concepts were applied
record_voice_over
教师
- Lada Adamic - School of Information, Center for the Study of Complex Systems
store
内容设计师

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
assistant
平台

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。
Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。
评论
5
/5
平均值
starstarstarstarstar
1
starstarstarstarstar
0
starstarstarstarstar
0
starstarstarstarstar
0
starstarstarstarstar
0
内容
5/5
平台
5/5
动画
5/5
最佳评论
I was trying to go to the course, but it seems it doesn't exist.....
您是 MOOC 的设计者?
keyboard_arrow_left
grade
keyboard_arrow_right
整合评论系统
I was trying to go to the course, but it seems it doesn't exist.....