list 8个序列
assignment 等级:入门
chat_bubble_outline 语言 : 中文
card_giftcard 512点
评论
-
starstarstarstarstar

关键信息

credit_card 免费进入
timer 总共64个小时

关于内容

Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. The course teaches the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。本課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。]

more_horiz 查看更多
more_horiz 收起
dns

课程大纲

Each of the following items correspond to approximately one hour of video lecture. [以下的每個小項目對應到約一小時的線上課程]

When Can Machines Learn? [何時可以使用機器學習]
-- The Learning Problem [機器學習問題]
-- Learning to Answer Yes/No [二元分類]
-- Types of Learning [各式機器學習問題]
-- Feasibility of Learning [機器學習的可行性]

Why Can Machines Learn? [為什麼機器可以學習]
-- Training versus Testing [訓練與測試]
-- Theory of Generalization [舉一反三的一般化理論]
-- The VC Dimension [VC 維度]
-- Noise and Error [
雜訊一錯誤]

How Can Machines Learn? [機器可以怎麼樣學習]
-- Linear Regression [線性迴歸]
-- Linear `Soft' Classification [軟性的線性分類]
-- Linear Classification beyond Yes/No [二元分類以外的分類問題]
-- Nonlinear Transformation [非線性轉換]

How Can Machines Learn Better? [機器
可以怎麼樣學得更好]
-- Hazard of Overfitting [過度訓練的危險]
-- Preventing Overfitting I: Regularization [避免過度訓練一:控制調適]
-- Preventing Overfitting II: Validation
[避免過度訓練二:自我檢測]
-- Three Learning Principles
[三個機器學習的重要原則]

record_voice_over

教师

  • Hsuan-Tien Lin - 資訊工程學系 (Computer Science and Information Engineering)
store

内容设计师

National Taiwan University
We firmly believe that open access to learning is a powerful socioeconomic equalizer. NTU is especially delighted to join other world-class universities on Coursera and to offer quality university courses to the Chinese-speaking population. We hope to transform the rich rewards of learning from a limited commodity to an experience available to all.
assistant

平台

Coursera

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。

Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。

你是这个MOOC的设计者?
您对这门课的评价是 ?
内容
0/5
平台
0/5
动画
0/5