- 来自www.coursera.org
機器學習基石 (Machine Learning Foundations)
课程
zh
中文
64 时
此内容评级为 4.5/5
- 自定进度
- 免费获取
- 8 序列
- 等级 介绍
课程详情
教学大纲
Each of the following items correspond to approximately one hour of video lecture. [以下的每個小項目對應到約一小時的線上課程]
When Can Machines Learn? [何時可以使用機器學習]
-- The Learning Problem [機器學習問題]
-- Learning to Answer Yes/No [二元分類]
-- Types of Learning [各式機器學習問題]
-- Feasibility of Learning [機器學習的可行性]
Why Can Machines Learn? [為什麼機器可以學習]
-- Training versus Testing [訓練與測試]
-- Theory of Generalization [舉一反三的一般化理論]
-- The VC Dimension [VC 維度]
-- Noise and Error [雜訊一錯誤]
How Can Machines Learn? [機器可以怎麼樣學習]
-- Linear Regression [線性迴歸]
-- Linear `Soft' Classification [軟性的線性分類]
-- Linear Classification beyond Yes/No [二元分類以外的分類問題]
-- Nonlinear Transformation [非線性轉換]
How Can Machines Learn Better? [機器可以怎麼樣學得更好]
-- Hazard of Overfitting [過度訓練的危險]
-- Preventing Overfitting I: Regularization [避免過度訓練一:控制調適]
-- Preventing Overfitting II: Validation [避免過度訓練二:自我檢測]
-- Three Learning Principles [三個機器學習的重要原則]
When Can Machines Learn? [何時可以使用機器學習]
-- The Learning Problem [機器學習問題]
-- Learning to Answer Yes/No [二元分類]
-- Types of Learning [各式機器學習問題]
-- Feasibility of Learning [機器學習的可行性]
Why Can Machines Learn? [為什麼機器可以學習]
-- Training versus Testing [訓練與測試]
-- Theory of Generalization [舉一反三的一般化理論]
-- The VC Dimension [VC 維度]
-- Noise and Error [雜訊一錯誤]
How Can Machines Learn? [機器可以怎麼樣學習]
-- Linear Regression [線性迴歸]
-- Linear `Soft' Classification [軟性的線性分類]
-- Linear Classification beyond Yes/No [二元分類以外的分類問題]
-- Nonlinear Transformation [非線性轉換]
How Can Machines Learn Better? [機器可以怎麼樣學得更好]
-- Hazard of Overfitting [過度訓練的危險]
-- Preventing Overfitting I: Regularization [避免過度訓練一:控制調適]
-- Preventing Overfitting II: Validation [避免過度訓練二:自我檢測]
-- Three Learning Principles [三個機器學習的重要原則]
先决条件
没有。
讲师
- Hsuan-Tien Lin - 資訊工程學系 (Computer Science and Information Engineering)
编辑
台湾国立大学是台湾的一所公立大学,位于台北市。
它是台湾公认的最负盛名的大学,为台湾培养了科学、经济、金融、语言和政治等领域的精英。
国立台湾大学(NTU)于 1928 年在台北成立,培养了许多政治和社会领袖。泛蓝运动和泛绿运动都起源于该大学校园。
该大学在大台北地区有六个校区,在南投县还有两个校区,占台湾岛总面积的近 1%。
平台
Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。
Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。
完成这个资源,写一篇评论