Social and Economic Networks: Models and Analysis

课程
en
英语
24 时
此内容评级为 4.5/5
来源
  • 来自www.coursera.org
状况
  • 自定进度
  • 免费获取
  • 收费证书
更多信息
  • 8 序列
  • 等级 高级

课程详情

教学大纲

  • Week 1 - Introduction, Empirical Background and Definitions
    Examples of Social Networks and their Impact, Definitions, Measures and Properties: Degrees, Diameters, Small Worlds, Weak and Strong Ties, Degree Distributions
  • Week 2 - Background, Definitions, and Measures Continued
    Homophily, Dynamics, Centrality Measures: Degree, Betweenness, Closeness, Eigenvector, and Katz-Bonacich. Erdos and Renyi Random Networks: Thresholds and Phase Transitions
  • Week 3 - Random Networks
    Poisson Random Networks, Exponential Random Graph Models, Growing Random Networks, Preferential Attachment and Power Laws, Hybrid models of Network Formation.
  • Week 4 - Strategic Network Formation
    Game Theoretic Modeling of Network Formation, The Connections Model, The Conflict between Incentives and Efficiency, Dynamics, Directed Networks, Hybrid Models of Choice and Chance.
  • Week 5 - Diffusion on Networks
    Empirical Background, The Bass Model, Random Network Models of Contagion, The SIS model, Fitting a Simulated Model to Data.
  • Week 6 - Learning on Networks
    Bayesian Learning on Networks, The DeGroot Model of Learning on a Network, Convergence of Beliefs, The Wisdom of Crowds, How Influence depends on Network Position..
  • Week 7 - Games on Networks
    Network Games, Peer Influences: Strategic Complements and Substitutes, the Relation between Network Structure and Behavior, A Linear Quadratic Game, Repeated Interactions and Network Structures.
  • Week 8 - Final Exam
    The description goes here

先决条件

没有。

讲师

Matthew O. Jackson
Professor
Economics

编辑

利兰-斯坦福大学(Leland Stanford Junior University),简称斯坦福大学,是一所美国私立大学,位于旧金山南部的硅谷。

其校训是 "Die Luft der Freiheit weht",意为 "自由之风拂面"。

在大多数国际排名中,斯坦福大学都名列世界顶尖大学之列,享有极高的声誉。

平台

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。

Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。

完成这个资源,写一篇评论