关键信息
关于内容
In previous courses in the Specialization, we have discussed how to sequence and compare genomes. This course will cover advanced topics in finding mutations lurking within DNA and proteins. In the first half of the course, we would like to ask how an individual's genome differs from the "reference genome" of the species. Our goal is to take small fragments of DNA from the individual and "map" them to the reference genome. We will see that the combinatorial pattern matching algorithms solving this problem are elegant and extremely efficient, requiring a surprisingly small amount of runtime and memory. In the second half of the course, we will learn how to identify the function of a protein even if it has been bombarded by so many mutations compared to similar proteins with known functions that it has become barely recognizable. This is the case, for example, in HIV studies, since the virus often mutates so quickly that researchers can struggle to study it. The approach we will use is based on a powerful machine learning tool called a hidden Markov model. Finally, you will learn how to apply popular bioinformatics software tools applying hidden Markov models to compare a protein against a related family of proteins.
课程大纲
- Week 1 - Week 1: Introduction to Read Mapping
Welcome to our class! We are glad that you decided to join us.
In this class, we will consider the following two central biological questions (the computational approaches needed to solve them are shown in parentheses):
- How Do We ...
- Week 2 - Week 2: The Burrows-Wheeler Transform
Welcome to week 2 of the class!
This week, we will introduce a paradigm called the Burrows-Wheeler transform; after seeing how it can be used in string compression, we will demonstrate that it is also the foundation of modern read-mapping algorithms...
- Week 3 - Week 3: Speeding Up Burrows-Wheeler Read Mapping
Welcome to week 3 of class!
Last week, we saw how the Burrows-Wheeler transform could be applied to multiple pattern matching. This week, we will speed up our algorithm and generalize it to the case that patterns have errors, which models the biolo...
- Week 4 - Week 4: Introduction to Hidden Markov Models
Welcome to week 4 of class!
This week, we will start examining the case of aligning sequences with many mutations -- such as related genes from different HIV strains -- and see that our problem formulation for sequence alignment is not adequate for ...
- Week 5 - Week 5: Profile HMMs for Sequence Alignment
Welcome to week 5 of class!
Last week, we introduced hidden Markov models. This week, we will see how hidden Markov models can be applied to sequence alignment with a profile HMM. We will then consider some advanced topics in this area, which are ...
- Week 6 - Week 6: Bioinformatics Application Challenge
Welcome to the sixth and final week of class!
This week brings our Application Challenge, in which we apply the HMM sequence alignment algorithms that we have developed.
教师
Pavel Pevzner
Professor
Department of Computer Science and Engineering
Phillip Compeau
Visiting Researcher
Department of Computer Science & Engineering
内容设计师

加州大学圣地亚哥分校是位于加利福尼亚州圣地亚哥的一所公立赠地研究型大学。加州大学圣地亚哥分校成立于 1960 年,位于斯克里普斯海洋学研究所附近,是加州大学十个校区中最南端的一个,提供 200 多个本科和研究生学位课程,在校本科生 33,096 人,研究生 9,872 人。
加州大学圣地亚哥分校被认为是世界上最好的大学之一。多份出版物将加州大学圣地亚哥分校的生物科学系和计算机科学系评为世界前十名。
平台

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。
Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。