
关键信息
关于内容
Most of the phenomena in the world around you are, at the fundamental level, based on physics, and much of physics is based on mechanics. Mechanics begins by quantifying motion, and then explaining it in terms of forces, energy and momentum. This allows us to analyse the operation of many familiar phenomena around us, but also the mechanics of planets, stars and galaxies. This on-demand course is recommended for senior high school and beginning university students and anyone with a curiosity about basic physics. (The survey tells us that it's often used by science teachers, too.) The course uses rich multimedia tutorials to present the material: film clips of key experiments, animations and worked example problems, all with a friendly narrator. You'll do a range of interesting practice problems, and in an optional component, you will use your ingenuity to complete at-home experiments using simple, everyday materials. You will need some high-school mathematics: arithmetic, a little algebra, quadratic equations, and the sine, cosine and tangent functions from trigonometry. The course does not use calculus. However, we do provide a study aid introducing the calculus that would accompany this course if it were taught in a university. By studying mechanics in this course, you will understand with greater depth many of the wonders around you in everyday life, in technology and in the universe at large. Meanwhile, we think you'll have some fun, too.
课程大纲
- Week 1 - Introduction and Basic Tools
This introductory section covers some basic tools you will need to solve some of the physics problems we will encounter later. - Week 2 - Velocity and Acceleration
Here we introduce kinematics, in which we describe and quantify movement of objects through space over time. Motion is so important to mechanics (and most of physics) that we'll spend a few weeks establishing the tools and techniques we'll need. We'll leave ex... - Week 3 - Motion in Two Dimensions
Here we look at kinematics in two-dimensions – specifically, projectiles and objects in circular motion. - Week 4 - Newton's Laws of Motion
After describing and quantifying motion (weeks 2 and 3), we now start explaining it with Newton's three laws of motion. Knowledge of Newton's laws and the ability to apply them to various situations will allow us to explain much of the motion we observe in the... - Week 5 - Weight, Friction and Spring Forces
We return to the difference between weight and mass. We introduce Hooke's law for elastic deformations. We consider forces between objects in contact and (for convenience) resolve them into their normal and frictional components – and as usual give you some pr... - Week 6 - Work, Energy and Power
In week 6 we explore work and energy, then power – the rate of doing work. We'll use work and Newton's second law to derive the quantity called kinetic energy. Looking at where work comes from, we'll distinguish two sorts of force – conservative and non-conser... - Week 7 - Momentum and Collisions
It’s time for some smashing fun! Once we've defined momentum we'll use momentum to analyse elastic and inelastic collisions. Stand by for hammers, skateboards, car crashes and a bed of nails… - Week 8 - Gravity
For as long as history – and probably much longer – people have stared at the planets and stars and wondered. Why do they shine? What keeps them moving? Why don't they fall down? So next is gravity – and how it runs the solar system, the galaxy and the univers...
教师
Prof. Joe Wolfe
Professor
School of Physics, Faculty of Science
Dr Elizabeth J. Angstmann
First Year Physics Director
School of Physics, Faculty of Science
Mr Sebastian Fricke
Teacher and laboratory manager
School of Physics, Faculty of Science
内容设计师

平台

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。
Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。