- 来自www.coursera.org

# Machine Learning

- 自定进度
- 免费获取
- 收费证书

- 11 序列
- 等级 介绍
- 字幕在 Chinese, Hebrew, Spanish, Hindi, Japanese

## 课程详情

### 教学大纲

- Week 1 -
**Introduction**

Welcome to Machine Learning! In this module, we introduce the core idea of teaching a computer to learn concepts using data—without being explicitly programmed. The Course Wiki is under construction. Please visit the resources tab for the most complete and up-... - Week 1 -
**Linear Regression with One Variable**

Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price prediction, present the notion of a cost function, and introduce the gradient descent method for learning. - Week 1 -
**Linear Algebra Review**

This optional module provides a refresher on linear algebra concepts. Basic understanding of linear algebra is necessary for the rest of the course, especially as we begin to cover models with multiple variables. - Week 2 -
**Linear Regression with Multiple Variables**

What if your input has more than one value? In this module, we show how linear regression can be extended to accommodate multiple input features. We also discuss best practices for implementing linear regression. - Week 2 -
**Octave/Matlab Tutorial**

This course includes programming assignments designed to help you understand how to implement the learning algorithms in practice. To complete the programming assignments, you will need to use Octave or MATLAB. This module introduces Octave/Matlab and shows yo... - Week 3 -
**Logistic Regression**

Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logistic regr... - Week 3 -
**Regularization**

Machine learning models need to generalize well to new examples that the model has not seen in practice. In this module, we introduce regularization, which helps prevent models from overfitting the training data. - Week 4 -
**Neural Networks: Representation**

Neural networks is a model inspired by how the brain works. It is widely used today in many applications: when your phone interprets and understand your voice commands, it is likely that a neural network is helping to understand your speech; when you cash a ch... - Week 5 -
**Neural Networks: Learning**

In this module, we introduce the backpropagation algorithm that is used to help learn parameters for a neural network. At the end of this module, you will be implementing your own neural network for digit recognition. - Week 6 -
**Advice for Applying Machine Learning**

Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in practice, and discuss the best ways to evaluate performance of the learned models. - Week 6 -
**Machine Learning System Design**

To optimize a machine learning algorithm, you’ll need to first understand where the biggest improvements can be made. In this module, we discuss how to understand the performance of a machine learning system with multiple parts, and also how to deal with skewe... - Week 7 -
**Support Vector Machines**

Support vector machines, or SVMs, is a machine learning algorithm for classification. We introduce the idea and intuitions behind SVMs and discuss how to use it in practice. - Week 8 -
**Unsupervised Learning**

We use unsupervised learning to build models that help us understand our data better. We discuss the k-Means algorithm for clustering that enable us to learn groupings of unlabeled data points. - Week 8 -
**Dimensionality Reduction**

In this module, we introduce Principal Components Analysis, and show how it can be used for data compression to speed up learning algorithms as well as for visualizations of complex datasets. - Week 9 -
**Anomaly Detection**

Given a large number of data points, we may sometimes want to figure out which ones vary significantly from the average. For example, in manufacturing, we may want to detect defects or anomalies. We show how a dataset can be modeled using a Gaussian distributi... - Week 9 -
**Recommender Systems**

When you buy a product online, most websites automatically recommend other products that you may like. Recommender systems look at patterns of activities between different users and different products to produce these recommendations. In this module, we introd... - Week 10 -
**Large Scale Machine Learning**

Machine learning works best when there is an abundance of data to leverage for training. In this module, we discuss how to apply the machine learning algorithms with large datasets. - Week 11 -
**Application Example: Photo OCR**

Identifying and recognizing objects, words, and digits in an image is a challenging task. We discuss how a pipeline can be built to tackle this problem and how to analyze and improve the performance of such a system.

### 先决条件

没有。

### 讲师

**Andrew Ng**

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

### 编辑

利兰-斯坦福大学（Leland Stanford Junior University），简称斯坦福大学，是一所美国私立大学，位于旧金山南部的硅谷。

其校训是 "Die Luft der Freiheit weht"，意为 "自由之风拂面"。

在大多数国际排名中，斯坦福大学都名列世界顶尖大学之列，享有极高的声誉。

### 平台

Coursera是一家数字公司，提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。

Coursera与顶尖大学和组织合作，在线提供一些课程，并提供许多科目的课程，包括：物理，工程，人文，医学，生物学，社会科学，数学，商业，计算机科学，数字营销，数据科学 和其他科目。

此内容评级为 4.8724/5

(没有评论)此内容评级为 4.8724/5

(没有评论)完成这个资源，写一篇评论