Introduction to Probability and Data with R
link 来源:www.coursera.org
list 10个序列
assignment 等级:入门
chat_bubble_outline 语言:英语
card_giftcard 640分
评论
4.1
starstarstarstarstar
2条评论

关键信息

credit_card 免费进入
verified_user 收费证书
timer 80小时总数

关于内容

This course introduces you to the discipline of statistics as a science of understanding and analyzing data. You will learn how to effectively make use of data in the face of uncertainty: how to collect data, how to analyze data, and how to use data to make inferences and conclusions about real world phenomena.

more_horiz 查看更多
more_horiz 收起
dns

课程大纲

Week 1: Unit 1 - Introduction to data
  • Part 1 – Designing studies
  • Part 2 – Exploratory data analysis
  • Part 3 – Introduction to inference via simulation
Week 2: Unit 2 - Probability and distributions
  • Part 1 – Defining probability
  • Part 2 – Conditional probability
  • Part 3 – Normal distribution
  • Part 4 – Binomial distribution
Week 3: Unit 3 - Foundations for inference
  • Part 1 – Variability in estimates and the Central Limit Theorem
  • Part 2 – Confidence intervals
  • Part 3 – Hypothesis tests
Week 4: Finish up Unit 3 + Midterm
  • Part 4 – Inference for other estimators
  • Part 5 - Decision errors, significance, and confidence
Week 5: Unit 4 - Inference for numerical variables
  • Part 1 – t-inference
  • Part 2 – Power
  • Part 3 – Comparing three or more means (ANOVA)
  • Part 4 – Simulation based inference for means
Week 6: Unit 5 - Inference for categorical variables
  • Part 1 – Single proportion
  • Part 2 – Comparing two proportions
  • Part 3 – Inference for proportions via simulation
  • Part 4 – Comparing three or more proportions (Chi-square)
Week 7: Unit 6 - Introduction to linear regression
  • Part 1 – Relationship between two numerical variables
  • Part 2 – Linear regression with a single predictor
  • Part 3 – Outliers in linear regression
  • Part 4 – Inference for linear regression
Week 8: Unit 7 - Multiple linear regression
  • Part 1 – Regression with multiple predictors
  • Part 2 – Inference for multiple linear regression
  • Part 3 – Model selection
  • Part 4 – Model diagnostics
Week 9: Review / catch-up week
  • Bayesian vs. frequentist inference
Week 10: Final exam
record_voice_over

教师

  • Mine Çetinkaya-Rundel - Department of Statistical Science
store

内容设计师

Duke University

杜克大学是一所位于北卡罗来纳州达勒姆的北美私立研究型大学。该大学以杜克王朝的名字命名。

虽然该大学直到 1924 年才正式成立(其根源可追溯到 1838 年)。杜克大学经常被称为 "南方的哈佛",是美国南方选拔最严格的大学。

该大学是美国大学协会的成员,自 1900 年以来,该协会一直将北美的精英研究型大学聚集在一起。

assistant

平台

Coursera

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。

Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。

评论
4.1 /5 平均值
starstarstarstarstar
1
starstarstarstarstar
1
starstarstarstarstar
0
starstarstarstarstar
0
starstarstarstarstar
0
内容
4.8/5
平台
2.8/5
动画
4.8/5
最佳评论

Am truely impress with content, Platform and animation this site provides to learners. Looking forward to enrich my data analysis skills

发布日期2020年9月16日
您是 MOOC 的设计者?
您对这门课的评价是?
内容
5/5
平台
5/5
动画
5/5
2021年5月11日
starstarstarstar

La certification n'est pas gratuite

2020年9月16日
starstarstarstar

Am truely impress with content, Platform and animation this site provides to learners. Looking forward to enrich my data analysis skills