- 来自www.coursera.org
Introduction to Astronomy
课程
en
英语
78 时
此内容评级为 4.5/5
- 自定进度
- 免费获取
- 免费证书
- 13 序列
- 等级 介绍
课程详情
教学大纲
Week 1: Positional Astronomy (naked-eye Astronomy)
We will spend our first week familiarizing ourselves with descriptions of the positions and motions of celestial objects.
Weeks 2-3: Newton’s Universe
Newtonian physics revolutionized the way we understand our Universe. We will discuss Newton’s laws of mechanics, the conservation laws that follow from them, his theory of gravity and some applications to Astronomy, as well as some properties of radiation. The last clip will be a quick look at the features of quantum mechanics relevant to our course. This will be a particularly busy and challenging unit, but hard work here will pay off later.
Week 4: Planets
We will not have time in this course to do justice to the broad and exciting field of planetary science. We will spend the week on a general review of the properties and structure of our Solar System and our understanding of its origins and history. We will end with some discussion of the exciting discoveries over the past decade of many hundreds of extrasolar planets.
Week 5: Stars
What we know about stars and a bit about how we found out. We will begin with a quick review of the best-studied star of all, our Sun. We will then talk about classifications; H-R diagrams and main sequence stars; distance, mass, and size measurements; binaries; clusters; and stellar evolution through the main sequence
Week 6: Post-Main-Sequence Stars
Final stages of stellar evolution and stellar remnants. Giants, white dwarfs, novae, variable stars, supernovae, neutron stars and pulsars.
Week 7: Relativity and Black Holes
We will spend most of this week acquiring an understanding of the special theory of relativity. We will then discuss the general theory in a qualitative way, and discuss its application to black holes, gravitational lensing, and other phenomena of interest.
Week 8: Galaxies
Galactic structure and classification. Active galactic nuclei, quasars and blazars. Galactic rotation curves and dark matter. Galaxy clusters and large-scale structure.
Weeks 9-10: Cosmology
What we can say about the universe as a whole. Hubble Expansion. Big bang cosmology. The cosmic microwave background. Recent determination of cosmological parameters. Early universe physics.
We will spend our first week familiarizing ourselves with descriptions of the positions and motions of celestial objects.
Weeks 2-3: Newton’s Universe
Newtonian physics revolutionized the way we understand our Universe. We will discuss Newton’s laws of mechanics, the conservation laws that follow from them, his theory of gravity and some applications to Astronomy, as well as some properties of radiation. The last clip will be a quick look at the features of quantum mechanics relevant to our course. This will be a particularly busy and challenging unit, but hard work here will pay off later.
Week 4: Planets
We will not have time in this course to do justice to the broad and exciting field of planetary science. We will spend the week on a general review of the properties and structure of our Solar System and our understanding of its origins and history. We will end with some discussion of the exciting discoveries over the past decade of many hundreds of extrasolar planets.
Week 5: Stars
What we know about stars and a bit about how we found out. We will begin with a quick review of the best-studied star of all, our Sun. We will then talk about classifications; H-R diagrams and main sequence stars; distance, mass, and size measurements; binaries; clusters; and stellar evolution through the main sequence
Week 6: Post-Main-Sequence Stars
Final stages of stellar evolution and stellar remnants. Giants, white dwarfs, novae, variable stars, supernovae, neutron stars and pulsars.
Week 7: Relativity and Black Holes
We will spend most of this week acquiring an understanding of the special theory of relativity. We will then discuss the general theory in a qualitative way, and discuss its application to black holes, gravitational lensing, and other phenomena of interest.
Week 8: Galaxies
Galactic structure and classification. Active galactic nuclei, quasars and blazars. Galactic rotation curves and dark matter. Galaxy clusters and large-scale structure.
Weeks 9-10: Cosmology
What we can say about the universe as a whole. Hubble Expansion. Big bang cosmology. The cosmic microwave background. Recent determination of cosmological parameters. Early universe physics.
先决条件
没有。
讲师
- Ronen Plesser - Physics
编辑
杜克大学是一所位于北卡罗来纳州达勒姆的北美私立研究型大学。该大学以杜克王朝的名字命名。
虽然该大学直到 1924 年才正式成立(其根源可追溯到 1838 年)。杜克大学经常被称为 "南方的哈佛",是美国南方选拔最严格的大学。
该大学是美国大学协会的成员,自 1900 年以来,该协会一直将北美的精英研究型大学聚集在一起。
平台
Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。
Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。
完成这个资源,写一篇评论