list 8个序列
assignment 等级:入门
chat_bubble_outline 语言 : 英语
card_giftcard 640点
评论
-
starstarstarstarstar

关键信息

credit_card 免费进入
verified_user 免费证书
timer 总共80个小时

关于内容

Examines key computational abstraction levels below modern high-level languages. From Java/C to assembly programming, to basic processor and system organization.

more_horiz 查看更多
more_horiz 收起
dns

课程大纲

This course should develop students’ sense of “what really happens” when software runs — and convey that this question can be answered at several levels of abstraction, including the hardware architecture level, the assembly level, the C programming level and the Java programming level. The core around which the course is built is C, assembly, and low-level data representation, but this is connected to higher levels (roughly how basic Java could be implemented), lower levels (the general structure of a processor), and the role of the operating system (but not how the operating system is implemented). For (computer science) students wanting to specialize at higher levels of abstraction, this could in the extreme be the only course they take that considers the “C level” and below. However, most will take a subset of Systems Programming, Hardware Design and Implementation, Operating Systems, Compilers, etc. For students interested in hardware, embedded systems, computer engineering, computer architecture, etc., this course is the introductory course after which other courses will delve both deeper (into specific topics) and lower (into hardware implementation, circuit design, etc.). The course has three principal themes:
  • Representation: how different data types (from simple integers to arrays of data structures) are represented in memory, how instructions are encoded, and how memory addresses (pointers) are generated and used to create complex structures.
  • Translation: how high-level languages are translated into the basic instructions embodied in process hardware with a particular focus on C and Java.
  • Control flow: how computers organize the order of their computations, keep track of where they are in large programs, and provide the illusion of multiple processes executing in parallel.
At the end of this course, students should:
  • understand the multi-step process by which a high-level program becomes a stream of instructions executed by a processor;
  • know what a pointer is and how to use it in manipulating complex data structures;
  • be facile enough with assembly programming (X86) to write simple pieces of code and understand how it maps to high-level languages (and vice-versa);
  • understand the basic organization and parameters of memory hierarchy and its importance for system performance;
  • be able to explain the role of an operating system;
  • know how Java fundamentally differs from C;
  • grasp what parallelism is and why it is important at the system level; and
  • be more effective programmers (more efficient at finding bugs, improved intuition about system performance).
Topics:
  • Number representation
  • Assembly language
  • Basics of C
  • Memory management
  • Operating-system process model
  • High-level machine architecture
  • Memory hierarchy
  • Implementation of high-level languages
record_voice_over

教师

  • Luis Ceze - Computer Science & Engineering
  • Gaetano Borriello - Computer Science & Engineering
store

内容设计师

University of Washington

Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

assistant

平台

Coursera

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。

Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。

你是这个MOOC的设计者?
您对这门课的评价是 ?
内容
0/5
平台
0/5
动画
0/5