Data Science: Machine Learning and Predictions
list 6个序列
assignment 等级:入门
chat_bubble_outline 语言 : 英语
card_giftcard 192点
Logo My Mooc Business

他们选择Edflex来发展业务技能。

了解更多
评论
-
starstarstarstarstar

关键信息

credit_card 免费进入
verified_user 收费证书
timer 总共24个小时

关于内容

One of the principal responsibilities of a data scientist is to make reliable predictions based on data. When the amount of data available is enormous, it helps if some of the analysis can be automated. Machine learning is a way of identifying patterns in data and using them to automatically make predictions or decisions. In this data science course, you will learn basic concepts and elements of machine learning.

The two main methods of machine learning you will focus on are regression and classification. Regression is used when you seek to predict a numerical quantity. Classification is used when you try to predict a category (e.g., given information about a financial transaction, predict whether it is fraudulent or legitimate).

For regression, you will learn how to measure the correlation between two variables and compute a best-fit line for making predictions when the underlying relationship is linear. The course will also teach you how to quantify the uncertainty in your prediction using the bootstrap method. These techniques will be motivated by a wide range of examples.

For classification, you will learn the k-nearest neighbor classification algorithm, learn how to measure the effectiveness of your classifier, and apply it to real-world tasks including medical diagnoses and predicting genres of movies.

The course will highlight the assumptions underlying the techniques, and will provide ways to assess whether those assumptions are good. It will also point out pitfalls that lead to overly optimistic or inaccurate predictions.

more_horiz 查看更多
more_horiz 收起
report_problem

前提

dns

课程大纲

  • Fundamental concepts of machine learning
  • Linear regression, correlation, and the phenomenon of regression to the mean
  • Classification using the k-nearest neighbors algorithm
  • How to compare and evaluate the accuracy of machine learning models
  • Basic probability and Bayes’ theorem
record_voice_over

教师

Ani Adhikari
Teaching Professor of Statistics
UC Berkeley

John DeNero
Giancarlo Teaching Fellow in the EECS Department
UC Berkeley

David Wagner
Professor of Computer Science
UC Berkeley

store

内容设计师

Berkeley
Berkeley
assistant

平台

Edx

EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.

EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.

Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.

你是这个MOOC的设计者?
您对这门课的评价是 ?
内容
0/5
平台
0/5
动画
0/5