Bioelectricity:  The Mechanism of Origin of Extracellular Potentials

Bioelectricity: The Mechanism of Origin of Extracellular Potentials

课程
en
英语
7 时
此内容评级为 0/5
来源
  • 来自www.coursera.org
状况
  • 自定进度
  • 免费获取
  • 收费证书
更多信息
  • 7 序列
  • 等级 中级

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Learn more

课程详情

教学大纲

  • Week 1 - Week 1
    A brief history of extracellular measurements, and an example of such a recording. The goal is to understand the amplitudes and time variation of such measurements, as well as learn about some interesting and useful historical events.
  • Week 2 - Week 2
    A presentation of the cylindrical fiber model of a nerve. The goal is to see how this geometrically simple model of a nerve actually is sufficient to explain complex bioelectric events within and around electrically active tissue. One learns that currents a...
  • Week 3 - Week 3
    Notable and useful aspects of extracellular wave forms are their changes in shape. What causes such changes? Two illuminating examples are studied, one that does not, and then another that does.
  • Week 4 - Week 4
    Weeks 1 to 3 present some intriguing concepts and explain them with drawings and sketches. Do the wave forms so drawn have any connection with real tissue? Indeed they do. The goal of this week is to examine some specific experimental wave forms that were me...
  • Week 5 - Week 5
    The concepts of week 3 give insight, but there is power in equations and numbers. The goal of week 5 is to show how the models of week 3 can be represented quantitatively, so that one can go beyond asking “What?” and ask “How much?” With equations available,...
  • Week 6 - Week 6
    This week’s goal is to introduce the concept and the mathematical definition of dipole sources. Such sources pair a current source and current sink, separated in a specific orientation by a small distance. A dipole model allows easy evaluation of many electr...
  • Week 7 - Week 7
    As a conclusion to the course, two diverse subjects are considered. One, the multipole expansion, is used when one has no model of the true origin of observed potentials but still needs to create an “equivalent” model to represent the data. The other, cardia...

先决条件

没有。

讲师

Dr. Roger Barr
Anderson-Rupp Professor of Biomedical Engineering and Associate Professor of Pediatrics
Biomedical Engineering, Pediatrics

编辑

杜克大学是一所位于北卡罗来纳州达勒姆的北美私立研究型大学。该大学以杜克王朝的名字命名。

虽然该大学直到 1924 年才正式成立(其根源可追溯到 1838 年)。杜克大学经常被称为 "南方的哈佛",是美国南方选拔最严格的大学。

该大学是美国大学协会的成员,自 1900 年以来,该协会一直将北美的精英研究型大学聚集在一起。

平台

Coursera是一家数字公司,提供由位于加利福尼亚州山景城的计算机教师Andrew Ng和达芙妮科勒斯坦福大学创建的大型开放式在线课程。

Coursera与顶尖大学和组织合作,在线提供一些课程,并提供许多科目的课程,包括:物理,工程,人文,医学,生物学,社会科学,数学,商业,计算机科学,数字营销,数据科学 和其他科目。

此内容评级为 4.5/5
(没有评论)
此内容评级为 4.5/5
(没有评论)
完成这个资源,写一篇评论