link 来源:www.edx.org
list 8个序列
assignment 等级:高级
chat_bubble_outline 语言:英语
card_giftcard 672分
评论
-
starstarstarstarstar
0条评论

关键信息

credit_card 免费进入
verified_user 收费证书
timer 48小时总数

关于内容

Online and software-based learning tools have been used increasingly in education. This movement has resulted in an explosion of data, which can now be used to improve educational effectiveness and support basic research on learning.

In this course, you will learn how and when to use key methods for educational data mining and learning analytics on this data. You will examine the methods being developed by researchers in the educational data mining, learning analytics, learning-at-scale, student modeling, and artificial intelligence communities. You'll also gain experience with standard data mining methods frequently applied to educational data. You will learn how to apply these methods and when to apply them, as well as their strengths and weaknesses for different applications.

The course will discuss how to use each method to answer education research questions, and to drive intervention and improvement in educational software and systems. Methods will be covered at a theoretical level, and in terms of learning how to apply them in Python or using software tools like RapidMiner. We will also discuss validity and generalizability; establishing how trustworthy and applicable the analysis results.

  • Key methods for educational data mining
  • How to apply methods using Python's built-in machine learning library, scikit-learn
  • How to apply methods using standard tools such as RapidMiner
  • How to use methods to answer practical educational questions

more_horiz 查看更多
more_horiz 收起
report_problem

前提

Basic knowledge of statistics, data mining, mathematical modeling, or algorithms is recommended. Experience with programming is not required.

dns

课程大纲

Week 1: Prediction Modeling
Regressors
Classifiers

Week 2: Model Goodness and Validation
Detector Confidence
Diagnostic Metrics
* Cross-Validation and Over-Fitting

Week 3: Behavior Detection and Feature Engineering
Ground Truth for Behavior Detection
Data Synchronization and Grain Size
Feature Engineering
Knowledge Engineering

Week 4: Knowledge Inference
Knowledge Inference
Bayesian Knowledge Tracing (BKT)
Performance Factor Analysis
Item Response Theory

Week 5: Relationship Mining
Correlation Mining
Causal Mining
Association Rule Mining
Sequential Pattern Mining
* Network Analysis

Week 6: Visualization
Learning Curves
Moment by Moment Learning Graphs
Scatter Plots
State Space Diagrams
* Other Awesome EDM Visualizations

Week 7: Structure Discovery
Clustering
Validation and Selection
Factor Analysis
Knowledge Inference Structures

Week 8: Discovery with Models
Discovery with Models
Text Mining
* Hidden Markov Models

record_voice_over

教师

Ryan Baker
Associate Professor
University of Pennsylvania

store

内容设计师

University of Pennsylvania

宾夕法尼亚大学(俗称宾大)成立于 1740 年,是一所位于美国宾夕法尼亚州费城的私立大学。作为常春藤联盟的成员,宾大是美国第四古老的高等学府,也是美国第一所同时提供本科和研究生学位的大学。

assistant

平台

Edx

EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.

EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.

Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.

您是 MOOC 的设计者?
您对这门课的评价是?
内容
5/5
平台
5/5
动画
5/5