Big Data Analysis with Scala and Spark
date_range Débute le 2017年3月13日
event_note Se termine le 2017年4月10日
list 4 séquence
assignment Niveau : Débutant
label 计算机科学
chat_bubble_outline Langue : 英语
card_giftcard 0 point
- /5
Avis de la communauté
0 avis

Les infos clés

credit_card Formation gratuite

En résumé

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming:

more_horiz Lire plus
more_horiz Lire moins

Le programme

  • Week 1 - Getting Started + Spark Basics
    Get up and running with Scala on your computer. Complete an example assignment to familiarize yourself with our unique way of submitting assignments. In this week, we'll bridge the gap between data parallelism in the shared memory scenario (learned in the Para...
  • Week 2 - Reduction Operations & Distributed Key-Value Pairs
    This week, we'll look at a special kind of RDD called pair RDDs. With this specialized kind of RDD in hand, we'll cover essential operations on large data sets, such as reductions and joins.
  • Week 3 - Partitioning and Shuffling
    This week we'll look at some of the performance implications of using operations like joins. Is it possible to get the same result without having to pay for the overhead of moving data over the network? We'll answer this question by delving into how we can par...
  • Week 4 - Structured data: SQL, Dataframes, and Datasets
    With our newfound understanding of the cost of data movement in a Spark job, and some experience optimizing jobs for data locality last week, this week we'll focus on how we can more easily achieve similar optimizations. Can structured data help us? We'll look...

Les intervenants

  • Dr. Heather Miller, Research Scientist

Le concepteur

L’École polytechnique fédérale de Lausanne (EPFL) est une institution universitaire de renommée internationale, spécialisée dans le domaine de la science et de la technologie, située à Lausanne, bien que sur le territoire communal d'Écublens, en Suisse et fondée en 1853, sous le nom d’École spéciale de Lausanne.


La plateforme

Coursera est une entreprise numérique proposant des formation en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Quelle note donnez-vous à cette ressource ?

Vous pourriez être intéressé par...