
Важная информация
Резюме
Time Series Analysis has wide applicability in economic and financial fields but also to geophysics, oceanography, atmospheric science, astronomy, engineering, among many other fields of practice. This course will illustrate time series analysis using many applications from these fields.
In this course, students will learn standard time series analysis topics such as modeling time series using regression analysis, univariate ARMA/ARIMA modelling, (G)ARCH modeling, Vector Autoregressive (VAR) model along with forecasting, model identification and diagnostics. Students will be given fundamental grounding in the use of such widely used tools in modeling time series.
Throughout this course, students will be exposed to not only fundamental concepts of time series analysis but also many data examples using the R statistical software. Thus by the end of this course, students will also be familiar with the implementation of time series models using the R statistical software along with interpretation for the results derived from such implementations.
This class is more about the opportunity for individual discovery than it is about mastering a fixed set of techniques.
- Widely used time series models such as univariate ARMA/ARIMA modelling, (G)ARCH modeling, and VAR model
- Fundamental grounding in the ue of some widely used tools, but much of the energy of the course is focus on individual investigation and learning.
- Implementation of time series models using the R statistical software
Специальные требования
A sound familiarity with under/graduate statistics and probability but also basic programming proficiency, linear algebra and basic calculus. A sound familiarity with linear regression modeling.
Программа
Weeks 4-6: Introduction to the ARMA Modeling and its extension, including illustration with data examples
Week 7: Midterm 1 Examination
Weeks 8-10: Introduction to most popular multivariate time series model, the VAR model, with data examples
Weeks 11-13: Introduction to GARCH modeling for heteroskedasticity, with data examples
Week 14: Midterm 2 Examination
Weeks 15: Overview of the time series models introduced in this course along with brief description of other time series methods
Week 16: Final Examination
Пользователи
Nicoleta Serban
Associate Professor
Georgia Institute of Technology
Разработчик

Платформа

EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.
EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.
Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.