# Statistical Reasoning for Public Health 1: Estimation, Inference, & Interpretation

МООК
en
Английский
64 h
This content is rated 0 out of 5
Source
• From www.coursera.org
Conditions
• Self-paced
• Free Access
• Бесплатный сертификат
• 8 Sequences
• Introductive Level

## Course details

### Syllabus

• Week 1 - Introduction and Module 1
This module, consisting of one lecture set, is intended to whet your appetite for the course, and examine the role of biostatistics in public health and medical research. Topics covered include study design types, data types, and data summarization.
• Week 2 - Module 2A: Summarization and Measurement
Module 2A consists of two lecture sets that cover measurement and summarization of continuous data outcomes for both single samples, and the comparison of two or more samples. Please see the posted learning objectives for these two lecture sets for more detai...
• Week 3 - Module 2B: Summarization and Measurement
Module 2B includes a single lecture set on summarizing binary outcomes. While at first, summarization of binary outcome may seem simpler than that of continuous outcomes, things get more complicated with group comparisons. Included in the module are examples...
• Week 4 - Module 2C: Summarization and Measurement
This module consists of a single lecture set on time-to-event outcomes. Time-to-event data comes primarily from prospective cohort studies with subjects who haven to had the outcome of interest at their time of enrollment. These subjects are followed for a...
• Week 5 - Module 3A: Sampling Variability and Confidence Intervals
Understanding sampling variability is the key to defining the uncertainty in any given sample/samples based estimate from a single study. In this module, sampling variability is explicitly defined and explored through simulations. The resulting patterns fro...
• Week 6 - Module 3B: Sampling Variability and Confidence Intervals
The concepts from the previous module (3A) will be extended create 95% CIs for group comparison measures (mean differences, risk differences, etc..) based on the results from a single study.
• Week 7 - Module 4A: Making Group Comparisons: The Hypothesis Testing Approach
Module 4A shows a complimentary approach to confidence intervals when comparing a summary measure between two populations via two samples; statistical hypothesis testing. This module will cover some of the most used statistical tests including the t-test for ...
• Week 8 - Module 4B: Making Group Comparisons: The Hypothesis Testing Approach
Module 4B extends the hypothesis tests for two populations comparisons to "omnibus" tests for comparing means, proportions or incidence rates between more than two populations with one test

None.

### Instructors

• John McGready, PhD, MS, Associate Scientist, Biostatistics
Bloomberg School of Public Health

### Editor

L’université Johns-Hopkins (Johns Hopkins University, ou JHU) est une université privée américaine, située à Baltimore dans le Maryland. Elle possède également des campus à Washington, à Bologne en Italie, à Singapour et à Nankin en Chine. Elle doit son nom à Johns Hopkins, un entrepreneur fortuné qui a légué à sa mort 7 millions de dollars à l'université.

Comptant parmi les universités les plus prestigieuses des États-Unis (surtout pour ses facultés de médecine et de santé publique, ainsi que pour son école d'affaires internationales), l'institution se définit comme la première « université de recherche » du pays. Au début de son histoire, elle s'est principalement inspirée de l'université de Heidelberg et du modèle d'instruction allemand de Wilhelm von Humboldt. En 2019, 39 lauréats du prix Nobel ont leur nom associé à l'université.

### Platform

Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.

Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.

This content is rated 4.5 out of 5
(no review)

## What did you think of this course?

Complete this resource to write a review