Reproducible Research
link Источник: www.coursera.org
list 4 последовательности
assignment Уровень : Начальный
chat_bubble_outline Язык : английский
language Субтитры : вьетнамский
card_giftcard 128 баллы
Logo My Mooc Business

Топ-компании выбирают Edflex для развития перспективных навыков

Узнать больше
Мнение сообщества
4
starstarstarstarstar
112 отзывы

Важная информация

credit_card Обучение платное
verified_user Сертификация платная
timer 16 час(ы) курса

Резюме

This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This course will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results.

more_horiz Подробнее
more_horiz Свернуть
dns

Программа

  • Week 1 - Week 1: Concepts, Ideas, & Structure
    This week will cover the basic ideas of reproducible research since they may be unfamiliar to some of you. We also cover structuring and organizing a data analysis to help make it more reproducible. I recommend that you watch the videos in the order that they ...
  • Week 2 - Week 2: Markdown & knitr
    This week we cover some of the core tools for developing reproducible documents. We cover the literate programming tool knitr and show how to integrate it with Markdown to publish reproducible web documents. We also introduce the first peer assessment which wi...
  • Week 3 - Week 3: Reproducible Research Checklist & Evidence-based Data Analysis
    This week covers what one could call a basic check list for ensuring that a data analysis is reproducible. While it's not absolutely sufficient to follow the check list, it provides a necessary minimum standard that would be applicable to almost any area of an...
  • Week 4 - Week 4: Case Studies & Commentaries
    This week there are two case studies involving the importance of reproducibility in science for you to watch.
record_voice_over

Пользователи

Roger D. Peng, PhD
Associate Professor, Biostatistics
Bloomberg School of Public Health

Jeff Leek, PhD
Associate Professor, Biostatistics
Bloomberg School of Public Health

Brian Caffo, PhD
Professor, Biostatistics
Bloomberg School of Public Health

store

Разработчик

Johns Hopkins University
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
assistant

Платформа

Coursera

Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.

Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.

Оценка сообщества
4 /5 Средняя
starstarstarstarstar
55
starstarstarstarstar
25
starstarstarstarstar
17
starstarstarstarstar
10
starstarstarstarstar
5
Контент
4/5
Платформа
4/5
Анимация
4/5
Лучшая оценка

This course spanned a single but important topic. The assignments were really important and challenging ( I spent several days on the second one). Overall, a fun course but don't expect anything like R Programming or Getting and Cleaning Data in terms of usefulness.

Аноним
2 февраля 2018 г.
Вы разработчик этого МООК ?
Какую оценку вы бы дали этому ресурсу ?
Содержание
5/5
Платформа
5/5
Анимация
5/5
5 марта 2018 г.
starstarstarstarstar

Same information repeated almost all the time ... it looks like the video were made independantly of the course and simply uploaded into Coursera as is .. It is ok in general but in this case, it was really painful to watch. Like video 1 (5min) then video 2 (6 min with 3 as a reminder of the video 1). Reminder are fine across courses or even in different weeks of the same course but not in 2 videos in a row. Otherwise content interesting but could have been explained in way less time.

3 марта 2018 г.
starstarstarstarstar

Very helpful and informative information on how to create reproducible research. The project gives you an opportunity to create reproducible research in the format of a report.

23 февраля 2018 г.
starstarstarstarstar

Most of the knowledge one needs can be perceived till week 2 only. Week 3 is a complete repetition of previous 2 weeks. While week 4 offers case studies which I feel are not much important. But overall the experience was good.

22 февраля 2018 г.
starstarstarstarstar

This is a necessary evil. You can try to do the other classes in the specialization without it, but learning to use R markdown well is hard with out this or a similar class

5 февраля 2018 г.
starstarstarstarstar

A few of the lectures were a bit repetitive if you are taking the full data science specialization. Overall there are some valuable skills and thought patterns that will prove useful if interested in reproducibility and clarity of analysis.