Matrix Factorization and Advanced Techniques
link Источник: www.coursera.org
list 6 последовательности
assignment Уровень : Начальный
chat_bubble_outline Язык : английский
card_giftcard 1 бал
Мнение сообщества
-
starstarstarstarstar
0 отзывы

Важная информация

credit_card Обучение платное
verified_user Сертификация платная

Резюме

In this course you will learn a variety of matrix factorization and hybrid machine learning techniques for recommender systems. Starting with basic matrix factorization, you will understand both the intuition and the practical details of building recommender systems based on reducing the dimensionality of the user-product preference space. Then you will learn about techniques that combine the strengths of different algorithms into powerful hybrid recommenders.

more_horiz Подробнее
more_horiz Свернуть
record_voice_over

Пользователи

Michael D. Ekstrand
Assistant Professor
Dept. of Computer Science, Boise State University

Joseph A Konstan
Distinguished McKnight Professor and Distinguished University Teaching Professor
Computer Science and Engineering

store

Разработчик

University of Minnesota
The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations.
assistant

Платформа

Coursera

Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.

Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.

Вы разработчик этого МООК ?
Какую оценку вы бы дали этому ресурсу ?
Содержание
5/5
Платформа
5/5
Анимация
5/5