Introduction into General Theory of Relativity

Introduction into General Theory of Relativity

МООК
en
Английский
48 h
This content is rated 4.5 out of 5
Source
  • From www.coursera.org
Conditions
  • Self-paced
  • Free Access
  • Fee-based Certificate
More info
  • 12 Sequences
  • Advanced Level

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Learn more

Course details

Syllabus

  • Week 1 - General Covariance
    To start with, we recall the basic notions of the Special Theory of Relativity. We explain that Minkwoskian coordinates in flat space-time correspond to inertial observers. Then we continue with transformations to non-inertial reference systems in flat space-t...
  • Week 2 - Covariant differential and Riemann tensor
    We start with the definition of what is tensor in a general curved space-time. Then we define what is connection, parallel transport and covariant differential. We show that for Riemannian manifolds connection coincides with the Christoffel symbols and geodesi...
  • Week 3 - Einstein-Hilbert action and Einstein equations
    We start with the explanation of how one can define Einstein equations from fundamental principles. Such as general covariance, least action principle and the proper choice of dynamical variables. Namely, the role of the latter in the General Theory of Relativ...
  • Week 4 - Schwarzschild solution
    With this module we start our study of the black hole type solutions. We explain how to solve the Einstein equations in the simplest settings. We find perhaps the most famous solution of these equations, which is referred to as the Schwarzschild black hole. We...
  • Week 5 - Penrose-Carter diagrams
    We start with the definition of the Penrose-Carter diagram for flat space-time. On this example we explain the uses of such diagrams. Then we continue with the definition of the Kruskal-Szekeres coordinates which cover the entire black hole space-time. With th...
  • Week 6 - Classical tests of General Theory of Relativity
    We start with the definition of Killing vectors and integrals of motion, which allow one to provide conserving quantities for a particle motion in Schwarzschild space-time. We derive the explicit geodesic equation for this space-time. This equation provides a ...
  • Week 7 - Interior solution and Kerr's solution
    We start with the definition of the so called perfect fluid energy-momentum tensor and with the description of its properties. We use this tensor to derive the so called interior solution of the Einstein equations, which provides a simple model of a star in th...
  • Week 8 - Collapse into black hole
    We start with the derivation of the Oppenheimer-Snyder solution of the Einstein equations, which describes the collapse of a star into black hole. We derive the Penrose-Carter diagram for this solution. We end up this module with a brief description of the ori...
  • Week 9 - Gravitational waves
    With this module we start our study of gravitational waves. We explain the important difference between energy-momentum conservation laws in the absence and in the presence of the dynamical gravity. We define the gravitational energy-momentum pseudo-tensor. Th...
  • Week 10 - Gravitational radiation
    In this module we show how moving massive bodies create gravitational waves in the linearized approximation. Then we continue with the derivation of the exact shock gravitational wave solutions of the Einstein equations. We describe their properties.To help t...
  • Week 11 - Friedman-Robertson-Walker cosmology
    With this module we start our discussion of the cosmological solutions. We define constant curvature three-dimensional homogeneous spaces. Then we derive Friedman-Robertson-Walker cosmological solutions of the Einstein equations. We describe their properties. ...
  • Week 12 - Cosmological solutions with non-zero cosmological constant
    In this module we derive constant curvature de Sitter and anti de Sitter solutions of the Einstein equations with non-zero cosmological constant. We describe the geometric and causal properties of such space-times and provide their Penrose-Carter diagrams. We ...

Prerequisite

None.

Instructors

Emil Akhmedov
Associate Professor
Faculty of Mathematics

Editor

L'Université nationale de recherche « École des hautes études en sciences économiques » (EHESE), de Moscou a été fondée en 1992 à l'initiative d'économistes russes.

Université d'État depuis 2001, d'abord sous tutelle du ministère du développement économique, elle est depuis 2008 un établissement d'enseignement supérieur et de recherche rattaché directement au gouvernement de la fédération de Russie. Son statut actuel d'université nationale de recherche de Russie lui a été conféré en 2009, après un concours inter-universitaire.

Elle est connue à l'international sous le nom de Higher School of Economics (HSE).

Outre Moscou, l'école possède trois campus-filiales : à Saint-Pétersbourg, Nijni Novgorod et Perm.

Régulièrement classée dans le Top 100 des meilleures universités mondiales selon le QS World University Rankings, elle est la seconde plus réputée4 de Russie.

Platform

Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.

Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.

Complete this resource to write a review