
Важная информация
Резюме
Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data.
Программа
- Week 1 - Week 1
In this first week of the course, we look at finding data and reading different file types. - Week 2 - Week 2
Welcome to Week 2 of Getting and Cleaning Data! The primary goal is to introduce you to the most common data storage systems and the appropriate tools to extract data from web or from databases like MySQL. - Week 3 - Week 3
Welcome to Week 3 of Getting and Cleaning Data! This week the lectures will focus on organizing, merging and managing the data you have collected using the lectures from Weeks 1 and 2. - Week 4 - Week 4
Welcome to Week 4 of Getting and Cleaning Data! This week we finish up with lectures on text and date manipulation in R. In this final week we will also focus on peer grading of Course Projects.
Пользователи
Jeff Leek, PhD
Associate Professor, Biostatistics
Bloomberg School of Public Health
Roger D. Peng, PhD
Associate Professor, Biostatistics
Bloomberg School of Public Health
Brian Caffo, PhD
Professor, Biostatistics
Bloomberg School of Public Health
Разработчик

Платформа

Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.
Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.