Data Science in Real Life
link Источник:
list 1 последовательность
assignment Уровень : Начальный
chat_bubble_outline Язык : английский
card_giftcard 32 баллы
Logo My Mooc Business

Топ-компании выбирают Edflex для развития перспективных навыков

Узнать больше
Мнение сообщества
0 отзывы

Важная информация

credit_card Обучение платное
verified_user Сертификация платная
timer 4 час(ы) курса


Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses. This is a focused course designed to rapidly get you up to speed on doing data science in real life. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to: 1, Describe the “perfect” data science experience 2. Identify strengths and weaknesses in experimental designs 3. Describe possible pitfalls when pulling / assembling data and learn solutions for managing data pulls. 4. Challenge statistical modeling assumptions and drive feedback to data analysts 5. Describe common pitfalls in communicating data analyses 6. Get a glimpse into a day in the life of a data analysis manager. The course will be taught at a conceptual level for active managers of data scientists and statisticians. Some key concepts being discussed include: 1. Experimental design, randomization, A/B testing 2. Causal inference, counterfactuals, 3. Strategies for managing data quality. 4. Bias and confounding 5. Contrasting machine learning versus classical statistical inference Course promo: Course cover image by Jonathan Gross. Creative Commons BY-ND

more_horiz Подробнее
more_horiz Свернуть


  • Week 1 - Introduction, the perfect data science experience
    This course is one module, intended to be taken in one week. Please do the course roughly in the order presented. Each lecture has reading and videos. Except for the introductory lecture, every lecture has a 5 question quiz; get 4 out of 5 or better on the qui...


Brian Caffo, PhD
Professor, Biostatistics
Bloomberg School of Public Health

Jeff Leek, PhD
Associate Professor, Biostatistics
Bloomberg School of Public Health

Roger D. Peng, PhD
Associate Professor, Biostatistics
Bloomberg School of Public Health



Johns Hopkins University
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.



Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.

Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.

Вы разработчик этого МООК ?
Какую оценку вы бы дали этому ресурсу ?