list 4 последовательности
assignment Уровень : Средний
chat_bubble_outline Язык: английский
language Субтитры : греческий, испанский
card_giftcard 400 баллы
Мнение сообщества
-
starstarstarstarstar

Важная информация

credit_card Обучение платное
verified_user Сертификация платная
timer 40 час(ы) курса

Резюме

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part course builds on the principles that you learned in our Principles of Computing course and is designed to train students in the mathematical concepts and process of "Algorithmic Thinking", allowing them to build simpler, more efficient solutions to real-world computational problems. In part 1 of this course, we will study the notion of algorithmic efficiency and consider its application to several problems from graph theory. As the central part of the course, students will implement several important graph algorithms in Python and then use these algorithms to analyze two large real-world data sets. The main focus of these tasks is to understand interaction between the algorithms and the structure of the data sets being analyzed by these algorithms. Recommended Background - Students should be comfortable writing intermediate size (300+ line) programs in Python and have a basic understanding of searching, sorting, and recursion. Students should also have a solid math background that includes algebra, pre-calculus and a familiarity with the math concepts covered in "Principles of Computing".

more_horiz Подробнее
more_horiz Свернуть
dns

Программа

  • Week 1 - Module 1 - Core Materials
    What is Algorithmic Thinking?, class structure, graphs, brute-force algorithms
  • Week 2 - Modules 1 - Project and Application
    Graph representations, plotting, analysis of citation graphs
  • Week 3 - Module 2 - Core Materials
    Asymptotic analysis, "big O" notation, pseudocode, breadth-first search
  • Week 4 - Module 2 - Project and Application
    Connected components, graph resilience, and analysis of computer networks
record_voice_over

Пользователи

Luay Nakhleh
Associate Professor
Computer Science; Biochemistry and Cell Biology

Scott Rixner
Professor
Computer Science

Joe Warren
Professor
Computer Science

store

Разработчик

Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the top 20 universities in the U.S. and the top 100 in the world. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy.
assistant

Платформа

Coursera

Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.

Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.

Вы разработчик этого МООК ?
Какую оценку вы бы дали этому ресурсу ?
Содержание
0/5
Платформа
0/5
Анимация
0/5