Важная информация
Резюме
Welcome to the Advanced Linear Models for Data Science Class 2: Statistical Linear Models. This class is an introduction to least squares from a linear algebraic and mathematical perspective. Before beginning the class make sure that you have the following: - A basic understanding of linear algebra and multivariate calculus. - A basic understanding of statistics and regression models. - At least a little familiarity with proof based mathematics. - Basic knowledge of the R programming language. After taking this course, students will have a firm foundation in a linear algebraic treatment of regression modeling. This will greatly augment applied data scientists' general understanding of regression models.
Программа
- Week 1 - Introduction and expected values
In this module, we cover the basics of the course as well as the prerequisites. We then cover the basics of expected values for multivariate vectors. We conclude with the moment properties of the ordinary least squares estimates. - Week 2 - The multivariate normal distribution
In this module, we build up the multivariate and singular normal distribution by starting with iid normals. - Week 3 - Distributional results
In this module, we build the basic distributional results that we see in multivariable regression. - Week 4 - Residuals
In this module we will revisit residuals and consider their distributional results. We also consider the so-called PRESS residuals and show how they can be calculated without re-fitting the model.
Пользователи
Brian Caffo, PhD
Professor, Biostatistics
Bloomberg School of Public Health
Разработчик

Платформа

Coursera - это цифровая компания, предлагающая массовые открытые онлайн-курсы, основанные учителями компьютеров Эндрю Нгом и Стэнфордским университетом Дафни Коллер, расположенные в Маунтин-Вью, штат Калифорния.
Coursera работает с ведущими университетами и организациями, чтобы сделать некоторые из своих курсов доступными в Интернете, и предлагает курсы по многим предметам, включая: физику, инженерию, гуманитарные науки, медицину, биологию, социальные науки, математику, бизнес, информатику, цифровой маркетинг, науку о данных и другие предметы.