Statistical Reasoning for Public Health 1: Estimation, Inference, & Interpretation

Curso
en
Inglês
64 h
Este conteúdo é classificado como 0 de 5
Fonte
• De www.coursera.org
CONDIÇÕES
• Acesso livre
Mais informações
• 8 sequências
• Introductive Level

Detalhes do curso

Programa de Estudos

• Week 1 - Introduction and Module 1
This module, consisting of one lecture set, is intended to whet your appetite for the course, and examine the role of biostatistics in public health and medical research. Topics covered include study design types, data types, and data summarization.
• Week 2 - Module 2A: Summarization and Measurement
Module 2A consists of two lecture sets that cover measurement and summarization of continuous data outcomes for both single samples, and the comparison of two or more samples. Please see the posted learning objectives for these two lecture sets for more detai...
• Week 3 - Module 2B: Summarization and Measurement
Module 2B includes a single lecture set on summarizing binary outcomes. While at first, summarization of binary outcome may seem simpler than that of continuous outcomes, things get more complicated with group comparisons. Included in the module are examples...
• Week 4 - Module 2C: Summarization and Measurement
This module consists of a single lecture set on time-to-event outcomes. Time-to-event data comes primarily from prospective cohort studies with subjects who haven to had the outcome of interest at their time of enrollment. These subjects are followed for a...
• Week 5 - Module 3A: Sampling Variability and Confidence Intervals
Understanding sampling variability is the key to defining the uncertainty in any given sample/samples based estimate from a single study. In this module, sampling variability is explicitly defined and explored through simulations. The resulting patterns fro...
• Week 6 - Module 3B: Sampling Variability and Confidence Intervals
The concepts from the previous module (3A) will be extended create 95% CIs for group comparison measures (mean differences, risk differences, etc..) based on the results from a single study.
• Week 7 - Module 4A: Making Group Comparisons: The Hypothesis Testing Approach
Module 4A shows a complimentary approach to confidence intervals when comparing a summary measure between two populations via two samples; statistical hypothesis testing. This module will cover some of the most used statistical tests including the t-test for ...
• Week 8 - Module 4B: Making Group Comparisons: The Hypothesis Testing Approach
Module 4B extends the hypothesis tests for two populations comparisons to "omnibus" tests for comparing means, proportions or incidence rates between more than two populations with one test

Nenhum.

Instrutores

• John McGready, PhD, MS, Associate Scientist, Biostatistics
Bloomberg School of Public Health

Editor

A Universidade Johns Hopkins (JHU) é uma universidade privada americana situada em Baltimore, Maryland. Tem também campus em Washington, D.C., Bolonha, Itália, Singapura e Nanjing, China. Deve o seu nome a Johns Hopkins, um rico empresário que legou 7 milhões de dólares à universidade aquando da sua morte.

Uma das universidades mais prestigiadas dos Estados Unidos (nomeadamente pelas suas faculdades de medicina e de saúde pública, bem como pela sua escola de assuntos internacionais), a instituição define-se como a principal "universidade de investigação" do país. No início da sua história, inspirou-se principalmente na Universidade de Heidelberg e no modelo educativo alemão de Wilhelm von Humboldt. Em 2019, 39 vencedores do Prémio Nobel têm os seus nomes associados à universidade.

Plataforma

A Coursera é uma empresa digital que oferece um curso on-line massivo e aberto, fundado pelos professores de computação Andrew Ng e Daphne Koller Stanford University, localizado em Mountain View, Califórnia.

O Coursera trabalha com as melhores universidades e organizações para disponibilizar alguns dos seus cursos on-line e oferece cursos em várias disciplinas, incluindo: física, engenharia, humanidades, medicina, biologia, ciências sociais, matemática, negócios, ciência da computação, marketing digital, ciência de dados. e outros assuntos.Cours

Este conteúdo é classificado como 4.5 de 5
(nenhuma revisão)
Este conteúdo é classificado como 4.5 de 5
(nenhuma revisão)
Conclua este recurso para fazer uma avaliação