list 10 sequencias
assignment Nível: Introdutório
chat_bubble_outline Idioma: Inglês
card_giftcard 640 pontos
Avaliações
-
starstarstarstarstar

Informações principais

credit_card Free accesso
verified_user Certificado gratuito
timer 80 total de horas

Sobre o conteúdo

This course introduces you to the discipline of statistics as a science of understanding and analyzing data. You will learn how to effectively make use of data in the face of uncertainty: how to collect data, how to analyze data, and how to use data to make inferences and conclusions about real world phenomena.

more_horiz Ler mais
more_horiz Ler menos
dns

Programa de estudos

Week 1: Unit 1 - Introduction to data
  • Part 1 – Designing studies
  • Part 2 – Exploratory data analysis
  • Part 3 – Introduction to inference via simulation
Week 2: Unit 2 - Probability and distributions
  • Part 1 – Defining probability
  • Part 2 – Conditional probability
  • Part 3 – Normal distribution
  • Part 4 – Binomial distribution
Week 3: Unit 3 - Foundations for inference
  • Part 1 – Variability in estimates and the Central Limit Theorem
  • Part 2 – Confidence intervals
  • Part 3 – Hypothesis tests
Week 4: Finish up Unit 3 + Midterm
  • Part 4 – Inference for other estimators
  • Part 5 - Decision errors, significance, and confidence
Week 5: Unit 4 - Inference for numerical variables
  • Part 1 – t-inference
  • Part 2 – Power
  • Part 3 – Comparing three or more means (ANOVA)
  • Part 4 – Simulation based inference for means
Week 6: Unit 5 - Inference for categorical variables
  • Part 1 – Single proportion
  • Part 2 – Comparing two proportions
  • Part 3 – Inference for proportions via simulation
  • Part 4 – Comparing three or more proportions (Chi-square)
Week 7: Unit 6 - Introduction to linear regression
  • Part 1 – Relationship between two numerical variables
  • Part 2 – Linear regression with a single predictor
  • Part 3 – Outliers in linear regression
  • Part 4 – Inference for linear regression
Week 8: Unit 7 - Multiple linear regression
  • Part 1 – Regression with multiple predictors
  • Part 2 – Inference for multiple linear regression
  • Part 3 – Model selection
  • Part 4 – Model diagnostics
Week 9: Review / catch-up week
  • Bayesian vs. frequentist inference
Week 10: Final exam
record_voice_over

Instrutores

  • Mine Çetinkaya-Rundel - Department of Statistical Science
store

Criador do conteúdo

Duke University
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
assistant

Plataforma

Coursera

A Coursera é uma empresa digital que oferece um curso on-line massivo e aberto, fundado pelos professores de computação Andrew Ng e Daphne Koller Stanford University, localizado em Mountain View, Califórnia.

O Coursera trabalha com as melhores universidades e organizações para disponibilizar alguns dos seus cursos on-line e oferece cursos em várias disciplinas, incluindo: física, engenharia, humanidades, medicina, biologia, ciências sociais, matemática, negócios, ciência da computação, marketing digital, ciência de dados. e outros assuntos.Cours

Você é o criador deste MOOC?
Qual a sua apinião sobre esse recurso?
Conteúdo
0/5
Platforma
0/5
Didática
0/5