Reinforcement Learning
link Origem: www.udacity.com
list 16 sequencias
assignment Nível: Introdutório
chat_bubble_outline Idioma : Inglês
card_giftcard 1 ponto
Avaliações
-
starstarstarstarstar
Ver avaliação

Informações principais

credit_card Free accesso

Sobre o conteúdo

You should take this course if you have an interest in machine learning and the desire to engage with it from a theoretical perspective. Through a combination of classic papers and more recent work, you will explore automated decision-making from a computer-science perspective. You will examine efficient algorithms, where they exist, for single-agent and multi-agent planning as well as approaches to learning near-optimal decisions from experience. At the end of the course, you will replicate a result from a published paper in reinforcement learning.

more_horiz Ler mais
more_horiz Ler menos
dns

Programa de estudos

* Reinforcement Learning Basics * Introduction to BURLAP * TD Lambda * Convergence of Value and Policy Iteration * Reward Shaping * Exploration * Generalization * Partially Observable MDPs * Options * Topics in Game Theory * Further Topics in RL Models
record_voice_over

Instrutores

  • Charles Isbell - Charles Isbell is a Professor and Senior Associate Dean at the School of Interactive Computing at Georgia Tech. His research passion is artificial intelligence, particularly on building autonomous agents that must live and interact with large numbers of other intelligent agents, some of whom may be human. Lately, he has turned his energies toward adaptive modeling, especially activity discovery (as distinct from activity recognition), scalable coordination, and development environments that support the rapid prototyping of adaptive agents. He is developing adaptive programming languages, and trying to understand what it means to bring machine learning tools to non-expert authors, designers and developers. He sometimes interacts with the physical world through racquetball, weight-lifting and Ultimate Frisbee.
  • Michael Littman - Michael Littman is a Professor of Computer Science at Brown University. He also teaches Udacity’s Algorithms course (CS215) on crunching social networks. Prior to joining Brown in 2012, he led the Rutgers Laboratory for Real-Life Reinforcement Learning (RL3) at Rutgers, where he served as the Computer Science Department Chair from 2009-2012. He is a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), served as program chair for AAAI's 2013 conference and the International Conference on Machine Learning in 2009, and received university-level teaching awards at both Duke and Rutgers. Charles Isbell taught him about racquetball, weight-lifting and Ultimate Frisbee, but he's not that great at any of them. He's pretty good at singing and juggling, though.
store

Criador do conteúdo

Georgia Institute of Technology

O Georgia Institute of Technology, também conhecido por Georgia Tech ou GT, é uma universidade pública de investigação mista situada em Atlanta, Geórgia, EUA. Faz parte da rede alargada do Sistema Universitário da Geórgia. O Georgia Tech tem escritórios em Savannah (Geórgia, EUA), Metz (França), Athlone (Irlanda), Xangai (China) e Singapura.

A reputação da Georgia Tech assenta nos seus programas de engenharia e ciências informáticas, que se encontram entre os melhores do mundo5,6. A oferta de cursos é complementada por programas nas áreas das ciências, arquitetura, humanidades e gestão.

assistant

Plataforma

Udacity

Udacity est une entreprise fondé par Sebastian Thrun, David Stavens, et Mike Sokolsky offrant cours en ligne ouvert et massif.

Selon Thrun, l'origine du nom Udacity vient de la volonté de l'entreprise d'être "audacieux pour vous, l'étudiant ". Bien que Udacity se concentrait à l'origine sur une offre de cours universitaires, la plateforme se concentre désormais plus sur de formations destinés aux professionnels.

Você é o criador deste MOOC?
Qual a sua apinião sobre esse recurso?
Conteúdo
5/5
Platforma
5/5
Didática
5/5