date_range Inicia em 2 de setembro de 2020
event_note Termina em 24 de dezembro de 2020
list 16 sequencias
assignment Nível: Avançado
chat_bubble_outline Idioma: Inglês
card_giftcard 2240 pontos
Logo My Mooc Business

Eles escolhem Edflex para desenvolver suas habilidades na empresa.

Saiba mais

Informações principais

credit_card Free accesso
verified_user Certificado pago
timer 160 total de horas

Sobre o conteúdo

The world is full of uncertainty: accidents, storms, unruly financial markets, noisy communications. The world is also full of data. Probabilistic modeling and the related field of statistical inference are the keys to analyzing data and making scientifically sound predictions.

Probabilistic models use the language of mathematics. But instead of relying on the traditional "theorem-proof" format, we develop the material in an intuitive -- but still rigorous and mathematically-precise -- manner. Furthermore, while the applications are multiple and evident, we emphasize the basic concepts and methodologies that are universally applicable.

The course covers all of the basic probability concepts, including:

  • multiple discrete or continuous random variables, expectations, and conditional distributions
  • laws of large numbers
  • the main tools of Bayesian inference methods
  • an introduction to random processes (Poisson processes and Markov chains)

The contents of this courseare heavily based upon the corresponding MIT class -- Introduction to Probability -- a course that has been offered and continuously refined over more than 50 years. It is a challenging class but will enable you to apply the tools of probability theory to real-world applications or to your research.

This course is part of theMITx MicroMasters Program in Statistics and Data Science. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit

  • The basic structure and elements of probabilistic models
  • Random variables, their distributions, means, and variances
  • Probabilistic calculations
  • Inference methods
  • Laws of large numbers and their applications
  • Random processes

more_horiz Ler mais
more_horiz Ler menos


College-level calculus (single-variable & multivariable). Comfort with mathematical reasoning; and familiarity with sequences, limits, infinite series, the chain rule, and ordinary or multiple integrals.


Programa de estudos

Unit 1: Probability models and axioms

  • Probability models and axioms
  • Mathematical background: Sets; sequences, limits, and series; (un)countable sets.

Unit 2: Conditioning and independence

  • Conditioning and Bayes' rule
  • Independence

Unit 3: Counting

  • Counting

Unit 4: Discrete random variables

  • Probability mass functions and expectations
  • Variance; Conditioning on an event; Multiple random variables
  • Conditioning on a random variable; Independence of random variables

Unit 5: Continuous random variables

  • Probability density functions
  • Conditioning on an event; Multiple random variables
  • Conditioning on a random variable; Independence; Bayes' rule

Unit 6: Further topics on random variables

  • Derived distributions
  • Sums of independent random variables; Covariance and correlation
  • Conditional expectation and variance revisited; Sum of a random number of independent random variables

Unit 7: Bayesian inference

  • Introduction to Bayesian inference
  • Linear models with normal noise
  • Least mean squares (LMS) estimation
  • Linear least mean squares (LLMS) estimation

Unit 8: Limit theorems and classical statistics

  • Inequalities, convergence, and the Weak Law of Large Numbers
  • The Central Limit Theorem (CLT)
  • An introduction to classical statistics

Unit 9: Bernoulli and Poisson processes

  • The Bernoulli process
  • The Poisson process
  • More on the Poisson process

Unit 10 (Optional): Markov chains

  • Finite-state Markov chains
  • Steady-state behavior of Markov chains
  • Absorption probabilities and expected time to absorption


John Tsitsiklis
Professor, Department of Electrical Engineering and Computer Science

Dimitri Bertsekas
Professor, Electrical Engineering and Computer Science

Patrick Jaillet
Professor, Electrical Engineering and Computer Science

Karene Chu
Lecturer and Research Scientist
Massachusetts Institute of Technology

Qing He
Teaching Assistant

Jimmy Li
Teaching Assistant

Jagdish Ramakrishnan
Teaching Assistant

Katie Szeto
Teaching Assistant

Kuang Xu
Teaching Assistant


Criador do conteúdo


Le Massachusetts Institute of Technology (MIT), en français Institut de technologie du Massachusetts, est un institut de recherche américain et une université, spécialisé dans les domaines de la science et de la technologie. Situé à Cambridge, dans l'État du Massachusetts, à proximité immédiate de Boston, au nord-est des États-Unis, le MIT est souvent considéré comme une des meilleures universités mondiales.

Il édite la Technology Review, une revue scientifique consacrée aux sciences de l'ingénieur et à l'innovation.




EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.

EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.

Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.

Você é o criador deste MOOC?
Qual a sua apinião sobre esse recurso?