Photonic Integrated Circuits 1
date_range Inicia em 11 de agosto de 2020
event_note Termina em 10 de outubro de 2020
list 8 sequencias
assignment Nível: Avançado
chat_bubble_outline Idioma: Inglês
card_giftcard 1.680 pontos
Logo My Mooc Business

Eles escolhem Edflex para desenvolver suas habilidades na empresa.

Saiba mais
Ver avaliação

Informações principais

credit_card Free accesso
verified_user Certificado pago
timer 120 total de horas

Sobre o conteúdo

To earn a Verified Certificate for this course, you must agree to the terms and conditions of End-User License Agreements for integrated photonics industry software (EPDA) and a process design kit (PDK) library, as accessed via the AIM Photonics Virtual Design Center online cloud computing website.

In addition to the Verified Certificate for the course, the registration fee includes two hundred hours of user access to the Design Center, for verified learners to work online with the industry-standard software and library to create an integrated photonics circuit design project. Because of this special inclusion, financial aid or other discounts will not be available for this course.

A limited number of design projects completed by verified learners are eligible for free submission to an AIM Photonics Institute photonic circuit fabrication run. Fabricated circuits are subsequently characterized at an AIM PIC testing workshop organized at Rochester Institute of Technology.

Photonics Integrated Circuits (PICs) are analogs to the computer microprocessor chip, poised to partner light-manipulating optical devices and transistor-based electronics for a vast array of modern applications in cloud computing, high-speed mobile wireless, smart sensing, augmented imaging, and quantum communications. PIC circuits create, guide, sort, and read information as signals of light, routed through a dizzying maze of hundreds of devices packed in an area about a millimeter on its side.

How can you design a circuit brimming with so much device density and interconnectedness, all by yourself? How can you do this design reliably, time and time again? How do you ensure your circuit is consistent with the design of others, so that you can both interpret each other’s chip architectures and applications?

Welcome to fabless photonics, the new paradigm for designing high-fidelity PICs.

This course introduces you to PIC design using a standardized Process Design Kit (PDK) library as your builders’ rulebook, and Electronic Photonic Design Automation (EPDA) software as your architecture tools. You’ll be guided through a step-by-step sequence giving you mastery to

  • model silicon photonic devices;
  • simulate a PIC;
  • layout the PIC chip; and
  • Design Rule Check (DRC) to revise layout into a final blueprint for PIC fabrication.

The course concludes with the creation of a verified “tape-out” design blueprint, ready for potential submission to a Multi-Project Wafer run at the AIM Photonics Institute—the world’s leading 300mm fabrication facility for high performance silicon PICs.

The course is structured around the design of a basic transceiver, and starts off with an overview of fabless PIC design followed by a review of passive photonic devices (waveguides, bends, splitters/combiners, interferometers). You’re then walked through the process of designing the transceiver chip with a focus on two active devices (electro-optic modulator, photodetector). The course highlights device compact models as the PDK methodology for flexible simulation and layout of PIC chip designs, and rigorously trains you in EPDA industry-standard software from Synopsys, Lumerical, Mentor Graphics, and the freeware KLayout.

The course runs for an initial three weeks of instruction (self-paced video lectures, homework, design project milestones, and a weekly synchronous webinar); followed by a two-week hiatus during which verified learners continue to have cloud access to the Design Center; and concludes with a final three weeks of instruction. Verified learners may elect to create a nominal PIC circuit design project in tandem with course instruction; or propose their own original circuit design (compatible with the AIM Education PDK component library), subject to instructor approval.

Completion of the course shows your professional engineer-level design aptitude in fabless integrated photonics, for leading edge industrial applications poised to transform modern manufacturing and the global economy in the next two decades.

more_horiz Ler mais
more_horiz Ler menos


A background in silicon photonics, fiber optics, or III-V semiconductors is recommended, but not required. Proficiency in linear algebra and calculus will enhance understanding of design concepts.


Programa de estudos

  • An in-depth exposure to the AIM Photonics Education PDK and its design guides.
  • Proficiency in EPDA software and how to assess your future design software needs.
  • How to model photonic devices, and create compact models for them.
  • How to simulate, layout, and DRC-check a PIC.
  • How to create modular building blocks and address performance trade-offs in fabless circuit design.


Stefan Preble
Professor, Kate Gleason College of Engineering
Rochester Institute of Technology

Jaime Cardenas
Assistant Professor of Optics
University of Rochester

Alan Kost
Assistant Professor of Optics
University of Arizona

Lionel Kimerling
Thomas Lord Professor of Materials Science and Engineering
Massachusetts Institute of Technology

Erik Verlage
Postdoctoral Associate, Materials Research Laboratory
Massachusetts Institute of Technology

Gregory Howland
Assistant Professor, School of Physics and Astronomy
Rochester Institute of Technology


Criador do conteúdo


Le Massachusetts Institute of Technology (MIT), en français Institut de technologie du Massachusetts, est un institut de recherche américain et une université, spécialisé dans les domaines de la science et de la technologie. Situé à Cambridge, dans l'État du Massachusetts, à proximité immédiate de Boston, au nord-est des États-Unis, le MIT est souvent considéré comme une des meilleures universités mondiales.

Il édite la Technology Review, une revue scientifique consacrée aux sciences de l'ingénieur et à l'innovation.




EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.

EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.

Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.

Você é o criador deste MOOC?
Qual a sua apinião sobre esse recurso?