Introduction to Computer Vision
link Origem:
list 16 sequencias
assignment Nível: Introdutório
chat_bubble_outline Idioma : Inglês
card_giftcard 1 ponto
Ver avaliação

Informações principais

credit_card Free accesso

Sobre o conteúdo

This course provides an introduction to computer vision including fundamentals of image formation, camera imaging geometry, feature detection and matching, multiview geometry including stereo, motion estimation and tracking, and classification. We’ll develop basic methods for applications that include finding known models in images, depth recovery from stereo, camera calibration, image stabilization, automated alignment (e.g. panoramas), tracking, and action recognition. We focus less on the machine learning aspect of CV as that is really classification theory best learned in an ML course. The focus of the course is to develop the intuitions and mathematics of the methods in lecture, and then to learn about the difference between theory and practice in the problem sets. All algorithms work perfectly in the slides. But remember what [Yogi Berra]( said: In theory there is no difference between theory and practice. In practice there is. (Einstein said something similar but who knows more about real life?) In this course you do not, for the most part, apply high-level library functions but use low to mid level algorithms to analyze images and extract structural information.

more_horiz Ler mais
more_horiz Ler menos

Programa de estudos

A brief outline of units is given below, grouped into 10 parts:

1 Introduction

- 1A Introduction

2 Image Processing for Computer Vision

- 2A Linear image processing - 2B Model fitting - 2C Frequency domain analysis

3 Camera Models and Views

- 3A Camera models - 3B Stereo geometry - 3C Camera calibration - 3D Multiple views

4 Image Features

- 4A Feature detection - 4B Feature descriptors - 4C Model fitting

5 Lighting

- 5A Photometry - 5B Lightness - 5C Shape from shading

6 Image Motion

- 6A Overview - 6B Optical flow

7 Tracking

- 7A Introduction to tracking - 7B Parametric models - 7C Non-parametric models - 7D Tracking considerations

8 Classification and Recognition

- 8A Introduction to recognition - 8B Classification: Generative models - 8C Classification: Discriminative models - 8D Action recognition

9 Useful Methods

- 9A Color spaces and segmentation - 9B Binary morphology - 9C 3D perception

10 Human Visual System

- 10A The retina - 10B Vision in the brain --- **GT OMSCS Students** Note: Please refer to your course website/schedule for further details, assignments, etc. **Spring 2015 resources** (old): - [Schedule]( Suggested pace, assignments, deadlines, references. - [Course website]( Course information, problem sets, academic policies, grading scheme. - [Piazza forum]( Discussions, announcements, clarifications. - [T-Square site]( Problem set submissions. Note: This course was previously offered as CS 4495.


  • Aaron Bobick - Aaron Bobick, PhD, joined Washington University in St. Louis as Dean of the School of Engineering & Applied Science and the James M. McKelvey Professor July 1, 2015. Prior to Washington University, he was a professor and founding chair of the School of Interactive Computing at the Georgia Institute of Technology, where he was a member of the faculty since 1999. He has B.Sc. degrees from MIT in Mathematics (1981) and Computer Science (1981) and a Ph.D. from MIT in Cognitive Science (1987). He joined the MIT Media Laboratory faculty in 1992 where he was a pioneer in the area of action recognition by computer vision. In 1999 Prof. Bobick moved to Georgia Tech where he became the Director of the GVU Center, an internationally known research center in computer vision, graphics, ubiquitous computing, and HCI. In 2005 the School of Interactive Computing was created with Prof. Bobick serving as the founding Chair. Prof. Bobick is both an IEEE Fellow and an ACM Distinguished Scientist. He has served as a senior area chair for most international computer vision conferences including serving as Program Chair of IEEE Conference on Computer Vision and Pattern Recognition. He has also served on the advisory board or boards of directors of a variety of surveillance-focused computer vision and medical imaging technology companies.
  • Irfan Essa - Irfan Essa is a Professor in the School of Interactive Computing (iC) and Associate Dean in the College of Computing (CoC), at the Georgia Institute of Technology (GA Tech), in Atlanta, Georgia, USA. Professor Essa works in the areas of Computer Vision, Computer Graphics, Computational Perception, Robotics and Computer Animation, Machine Learning, and Social Computing, with potential impact on Video Analysis and Production (e.g., Computational Photography & Video, Image-based Modeling and Rendering, etc.) Human Computer Interaction, Artificial Intelligence, Computational Behavioral/Social Sciences, and Computational Journalism research. He has published over 150 scholarly articles in leading journals and conference venues on these topics and several of his papers have also won best paper awards. He has been awarded the NSF CAREER and was elected to the grade of IEEE Fellow. He has held extended research consulting positions with Disney Research and Google Research and also was an Adjunct Faculty Member at Carnegie Mellon’s Robotics Institute. He joined GA Tech Faculty in 1996 after his earning his MS (1990), Ph.D. (1994), and holding research faculty position at the MIT Media Lab (1988-1996).

Criador do conteúdo

Georgia Institute of Technology

O Georgia Institute of Technology, também conhecido por Georgia Tech ou GT, é uma universidade pública de investigação mista situada em Atlanta, Geórgia, EUA. Faz parte da rede alargada do Sistema Universitário da Geórgia. O Georgia Tech tem escritórios em Savannah (Geórgia, EUA), Metz (França), Athlone (Irlanda), Xangai (China) e Singapura.

A reputação da Georgia Tech assenta nos seus programas de engenharia e ciências informáticas, que se encontram entre os melhores do mundo5,6. A oferta de cursos é complementada por programas nas áreas das ciências, arquitetura, humanidades e gestão.




Udacity est une entreprise fondé par Sebastian Thrun, David Stavens, et Mike Sokolsky offrant cours en ligne ouvert et massif.

Selon Thrun, l'origine du nom Udacity vient de la volonté de l'entreprise d'être "audacieux pour vous, l'étudiant ". Bien que Udacity se concentrait à l'origine sur une offre de cours universitaires, la plateforme se concentre désormais plus sur de formations destinés aux professionnels.

Você é o criador deste MOOC?
Qual a sua apinião sobre esse recurso?