link
Origem: www.coursera.org
list
13 sequencias
assignment
Nível: Introdutório
label
Astronomia
chat_bubble_outline
Idioma : Inglês
card_giftcard
624 pontos
Avaliações
Informações principais
credit_card
Free accesso
verified_user
Certificado gratuito
timer
78 total de horas
Sobre o conteúdo
An introduction to astronomy through a broad survey of what we know about the universe and how we know it.
more_horiz
Ler mais
more_horiz
Ler menos
dns
Programa de estudos
Week 1: Positional Astronomy (naked-eye Astronomy)
We will spend our first week familiarizing ourselves with descriptions of the positions and motions of celestial objects.
Weeks 2-3: Newton’s Universe
Newtonian physics revolutionized the way we understand our Universe. We will discuss Newton’s laws of mechanics, the conservation laws that follow from them, his theory of gravity and some applications to Astronomy, as well as some properties of radiation. The last clip will be a quick look at the features of quantum mechanics relevant to our course. This will be a particularly busy and challenging unit, but hard work here will pay off later.
Week 4: Planets
We will not have time in this course to do justice to the broad and exciting field of planetary science. We will spend the week on a general review of the properties and structure of our Solar System and our understanding of its origins and history. We will end with some discussion of the exciting discoveries over the past decade of many hundreds of extrasolar planets.
Week 5: Stars
What we know about stars and a bit about how we found out. We will begin with a quick review of the best-studied star of all, our Sun. We will then talk about classifications; H-R diagrams and main sequence stars; distance, mass, and size measurements; binaries; clusters; and stellar evolution through the main sequence
Week 6: Post-Main-Sequence Stars
Final stages of stellar evolution and stellar remnants. Giants, white dwarfs, novae, variable stars, supernovae, neutron stars and pulsars.
Week 7: Relativity and Black Holes
We will spend most of this week acquiring an understanding of the special theory of relativity. We will then discuss the general theory in a qualitative way, and discuss its application to black holes, gravitational lensing, and other phenomena of interest.
Week 8: Galaxies
Galactic structure and classification. Active galactic nuclei, quasars and blazars. Galactic rotation curves and dark matter. Galaxy clusters and large-scale structure.
Weeks 9-10: Cosmology
What we can say about the universe as a whole. Hubble Expansion. Big bang cosmology. The cosmic microwave background. Recent determination of cosmological parameters. Early universe physics.
We will spend our first week familiarizing ourselves with descriptions of the positions and motions of celestial objects.
Weeks 2-3: Newton’s Universe
Newtonian physics revolutionized the way we understand our Universe. We will discuss Newton’s laws of mechanics, the conservation laws that follow from them, his theory of gravity and some applications to Astronomy, as well as some properties of radiation. The last clip will be a quick look at the features of quantum mechanics relevant to our course. This will be a particularly busy and challenging unit, but hard work here will pay off later.
Week 4: Planets
We will not have time in this course to do justice to the broad and exciting field of planetary science. We will spend the week on a general review of the properties and structure of our Solar System and our understanding of its origins and history. We will end with some discussion of the exciting discoveries over the past decade of many hundreds of extrasolar planets.
Week 5: Stars
What we know about stars and a bit about how we found out. We will begin with a quick review of the best-studied star of all, our Sun. We will then talk about classifications; H-R diagrams and main sequence stars; distance, mass, and size measurements; binaries; clusters; and stellar evolution through the main sequence
Week 6: Post-Main-Sequence Stars
Final stages of stellar evolution and stellar remnants. Giants, white dwarfs, novae, variable stars, supernovae, neutron stars and pulsars.
Week 7: Relativity and Black Holes
We will spend most of this week acquiring an understanding of the special theory of relativity. We will then discuss the general theory in a qualitative way, and discuss its application to black holes, gravitational lensing, and other phenomena of interest.
Week 8: Galaxies
Galactic structure and classification. Active galactic nuclei, quasars and blazars. Galactic rotation curves and dark matter. Galaxy clusters and large-scale structure.
Weeks 9-10: Cosmology
What we can say about the universe as a whole. Hubble Expansion. Big bang cosmology. The cosmic microwave background. Recent determination of cosmological parameters. Early universe physics.
record_voice_over
Instrutores
- Ronen Plesser - Physics
store
Criador do conteúdo

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
assistant
Plataforma

A Coursera é uma empresa digital que oferece um curso on-line massivo e aberto, fundado pelos professores de computação Andrew Ng e Daphne Koller Stanford University, localizado em Mountain View, Califórnia.
O Coursera trabalha com as melhores universidades e organizações para disponibilizar alguns dos seus cursos on-line e oferece cursos em várias disciplinas, incluindo: física, engenharia, humanidades, medicina, biologia, ciências sociais, matemática, negócios, ciência da computação, marketing digital, ciência de dados. e outros assuntos.Cours
Você é o criador deste MOOC?
keyboard_arrow_left
grade
keyboard_arrow_right
Integrar o módulo de avaliação