High Performance Computing

High Performance Computing

Curso
en
Inglês
Este conteúdo é classificado como 4.5 de 5
Fonte
  • De www.udacity.com
CONDIÇÕES
  • Individualizado
  • Acesso livre
Mais informações
  • 24 sequências
  • Introductive Level

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Saiba mais

Detalhes do curso

Programa de Estudos

The course topics are centered on three different ideas or extensions to the usual serial RAM model you encounter in CS 101. Recall that a serial RAM assumes a sequential or serial processor connected to a main memory.* Unit 1: The work-span or dynamic multithreading modelIn this model, the idea is that there are multiple processors connected to the main memory. Since they can all “see” the same memory, the processors can coordinate and communicate via reads and writes to that “shared” memory.Sub-topics include:** Intro to the basic algorithmic model** Intro to OpenMP, a practical programming model** Comparison-based sorting algorithms** Scans and linked list algorithms** Tree algorithms** Graph algorithms, e.g., breadth-first search* Unit 2: Distributed memory or network modelsIn this model, the idea is that there is not one serial RAM, but many serial RAMs connected by a network. In this model, each serial RAM’s memory is private to the other RAMs; consequently, the processors must coordinate and communicate by sending and receiving messages.Sub-topics include:** The basic algorithmic model** Intro to the Message Passing Interface, a practical programming model** Reasoning about the effects of network topology** Dense linear algebra** Sorting** Sparse graph algorithms** Graph partitioning* Unit 3: Two-level memory or I/O modelsIn this model, we return to a serial RAM, but instead of having only a processor connected to a main memory, there is a smaller but faster scratchpad memory in between the two. The algorithmic question here is how to use the scratchpad effectively, in order to minimize costly data transfers from main memory.Sub-topics include:** Basic models** Efficiency metrics, including “emerging” metrics like energy and power** I/O-aware algorithms** Cache-oblivious algorithms

Pré-requisito

Nenhum.

Instrutores

  • Rich Vuduc - Rich Vuduc an associate professor in the School of Computational Science and Engineering (CSE) atGeorgia Tech. His research is in the area of high-performance computing.This year, Professor Vuduc is also serving as both the Associate Chair of Academic Affairs in the School of CSE and as the Director of CSE Programs.Research: The HPC Garage [@hpcgarage].Professor Vuduc’s lab is developing automated tools and techniques to tune, to analyze, and to debug software for parallel machines, including emerging high-end multi/manycore architectures and accelerators. They focus on applying these methods to CSE applications, which include computer-based simulation of natural and engineered systems and data analysis.

Editor

O Georgia Institute of Technology, também conhecido por Georgia Tech ou GT, é uma universidade pública de investigação mista situada em Atlanta, Geórgia, EUA. Faz parte da rede alargada do Sistema Universitário da Geórgia. O Georgia Tech tem escritórios em Savannah (Geórgia, EUA), Metz (França), Athlone (Irlanda), Xangai (China) e Singapura.

A reputação da Georgia Tech assenta nos seus programas de engenharia e ciências informáticas, que se encontram entre os melhores do mundo5,6. A oferta de cursos é complementada por programas nas áreas das ciências, arquitetura, humanidades e gestão.

Plataforma

Udacity est une entreprise fondé par Sebastian Thrun, David Stavens, et Mike Sokolsky offrant cours en ligne ouvert et massif.

Selon Thrun, l'origine du nom Udacity vient de la volonté de l'entreprise d'être "audacieux pour vous, l'étudiant ". Bien que Udacity se concentrait à l'origine sur une offre de cours universitaires, la plateforme se concentre désormais plus sur de formations destinés aux professionnels.

Conclua este recurso para fazer uma avaliação