Informações principais
Sobre o conteúdo
Learn both theory and application for basic methods that have been invented either for developing new concepts – principal components or clusters, or for finding interesting correlations – regression and classification. This is preceded by a thorough analysis of 1D and 2D data.
Programa de estudos
Week 1. Intro: Examples of data and data analysis problems; visualization.
Week 2. 1D analysis. Feature scales. Histogram. Two common types of histograms: Gaussian and Power Law. Central values. Minkowski distance and data recovery view. Validation with Bootstrap.
Week 3-4. 2D analysis cases:
(Both quantitative: Scatter-plot, linear regression, correlation and determinacy coefficients: meaning and properties. Both nominal: Contingency table, Quetelet index, Pearson chi-squared coefficient, its double meaning and visualization).
Week 5-6. Learning multivariate correlations
(Bayes approach and Naïve Bayes classifier with a Bag-of-words text model; Decision trees and criteria for building them.)
Week 7. Principal components (PCA) and SVD
(SVD model behind PCA: student marks as the product of subject factor scores and subject loadings. Application to deriving a hidden underlying factor. Data visualization with PCA. Conventional PCA and data normalization issues.)
Week 8. Clustering with k-means
(K-Means iterations and K-Means features
K-Means criterion. Anomalous clusters and intelligent K-Means.)
Instrutores
- Boris Mirkin - Department of Data Analysis and Artificial Intelligence
Criador do conteúdo

Plataforma

A Coursera é uma empresa digital que oferece um curso on-line massivo e aberto, fundado pelos professores de computação Andrew Ng e Daphne Koller Stanford University, localizado em Mountain View, Califórnia.
O Coursera trabalha com as melhores universidades e organizações para disponibilizar alguns dos seus cursos on-line e oferece cursos em várias disciplinas, incluindo: física, engenharia, humanidades, medicina, biologia, ciências sociais, matemática, negócios, ciência da computação, marketing digital, ciência de dados. e outros assuntos.Cours