Approximation Algorithms Part II
link Origem: www.coursera.org
list 4 sequencias
assignment Nível: Introdutório
chat_bubble_outline Idioma : Inglês
card_giftcard 1 ponto
Avaliações
-
starstarstarstarstar
Ver avaliação

Informações principais

credit_card Free accesso
verified_user Certificado pago

Sobre o conteúdo

Approximation algorithms, Part 2 This is the continuation of Approximation algorithms, Part 1. Here you will learn linear programming duality applied to the design of some approximation algorithms, and semidefinite programming applied to Maxcut. By taking the two parts of this course, you will be exposed to a range of problems at the foundations of theoretical computer science, and to powerful design and analysis techniques. Upon completion, you will be able to recognize, when faced with a new combinatorial optimization problem, whether it is close to one of a few known basic problems, and will be able to design linear programming relaxations and use randomized rounding to attempt to solve your own problem. The course content and in particular the homework is of a theoretical nature without any programming assignments. This is the second of a two-part course on Approximation Algorithms.

more_horiz Ler mais
more_horiz Ler menos
dns

Programa de estudos

  • Week 1 - Linear Programming Duality
    This module does not study any specific combinatorial optimization problem. Instead, it introduces a central feature of linear programming, duality.
  • Week 2 - Steiner Forest and Primal-Dual Approximation Algorithms
    This module uses linear programming duality to design an algorithm for another basic problem, the Steiner forest problem.
  • Week 3 - Facility Location and Primal-Dual Approximation Algorithms
    This module continues teaching algorithmic applications of linear programming duality by applying it to another basic problem, the facility location problem.
  • Week 4 - Maximum Cut and Semi-Definite Programming
    We introduce a generalization of linear programming, semi-definite programming.This module uses semi-definite programming to design an approximation algorithm for another basic problem, the maximum cut problem.
record_voice_over

Instrutores

Claire Mathieu

store

Criador do conteúdo

École normale supérieure

L’École normale supérieure (ENS) est un établissement d'enseignement supérieur pour les études prédoctorales et doctorales (graduate school) et un haut lieu de la recherche française. L'ENS offre à 300 nouveaux étudiants et 200 doctorants chaque année une formation de haut niveau, largement pluridisciplinaire, des humanités et sciences sociales aux sciences dures. Régulièrement distinguée au niveau international, l'ENS a formé 10 médailles Fields et 13 prix Nobel.

assistant

Plataforma

Coursera

A Coursera é uma empresa digital que oferece um curso on-line massivo e aberto, fundado pelos professores de computação Andrew Ng e Daphne Koller Stanford University, localizado em Mountain View, Califórnia.

O Coursera trabalha com as melhores universidades e organizações para disponibilizar alguns dos seus cursos on-line e oferece cursos em várias disciplinas, incluindo: física, engenharia, humanidades, medicina, biologia, ciências sociais, matemática, negócios, ciência da computação, marketing digital, ciência de dados. e outros assuntos.Cours

Você é o criador deste MOOC?
Qual a sua apinião sobre esse recurso?
Conteúdo
5/5
Platforma
5/5
Didática
5/5