# Making Better Group Decisions: Voting, Judgement Aggregation and Fair Division

Cours
en
Anglais
7 h
Ce contenu est noté 0 sur 5
Source
• Sur www.coursera.org
Conditions
• À son rythme
• Accès libre
• Certificat gratuit
Plus d'informations
• 7 séquences
• Niveau Introductif

## Détails du cours

### Déroulé

Week 1:  Voting Methods
The Voting Problem
A Quick Introduction to Voting Methods (e.g., Plurality Rule, Borda Count,
Plurality with Runoff, The Hare System, Approval Voting)
Preferences
How Likely is the Condorcet Paradox?
Condorcet Consistent Voting Methods
Approval Voting
Combining Approval and Preference

Choosing How to Choose
Should the Condorcet Winner be Elected?
Failures of Monotonicity
Spoiler Candidates and Failures of Independence
Failures of Unanimity
Optimal Decisions or Finding Compromise?
Finding a Social Ranking vs. Finding a Winner

Week 3: Characterizing Voting Methods
Classifying Voting Methods
The Social Choice Model
Anonymity, Neutrality and Unanimity
Characterizing Majority Rule
Characterizing Voting Methods
Five Characterization Results
Distance-Based Characterizations of Voting Methods
Arrow's Theorem
Proof of Arrow's Theorem
Variants of Arrow's Theorem

Week 4: Topics in Social Choice Theory
Introductory Remarks
Domain Restrictions: Single-Peakedness
Sen’s Value Restriction
Strategic Voting
Manipulating Voting Methods
Lifting Preferences
The Gibbard-Satterthwaite Theorem

Week 5: Aggregating Judgements
Voting in Combinatorial Domains
The Condorcet Jury Theorem
The Judgement Aggregation Model
Properties of Aggregation Methods
Impossibility Results in Judgement Aggregation
Proof of the Impossibility Theorem(s)

Week 6: Fair Division
Introduction to Fair Division
Fairness Criteria
Efficient and Envy-Free Divisions
Finding an Efficient and Envy Free Division
Help the Worst Off or Avoid Envy?

Week 7:  Cake-Cutting Algorithms
The Cake Cutting Problem
Cut and Choose
Equitable and Envy-Free Proocedures
Proportional Procedures
The Stromquist Procedure
The Selfridge-Conway Procedure
Concluding Remarks

Aucun.

• - Philosophy

### Éditeur

L'université du Maryland est l'université phare de l'État et l'une des principales universités publiques de recherche du pays. Leader mondial en matière de recherche, d'entrepreneuriat et d'innovation, l'université accueille plus de 37 000 étudiants, 9 000 membres du corps enseignant et du personnel, et 250 programmes académiques.

Son corps professoral compte trois lauréats du prix Nobel, trois lauréats du prix Pulitzer, 47 membres des académies nationales et un grand nombre de chercheurs Fulbright. L'institution dispose d'un budget de fonctionnement de 1,8 milliard de dollars, obtient 500 millions de dollars par an en financement externe de la recherche et a récemment achevé une campagne de collecte de fonds d'un milliard de dollars.

### Plateforme

Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Complétez cette ressource pour donner votre avis