Volcanic Eruptions: a material science.

Cours
en
Anglais
10 h
Ce contenu est noté 4.5 sur 5
Source
  • Sur www.coursera.org
Conditions
  • À son rythme
  • Accès libre
  • Certificat gratuit
Plus d'informations
  • 10 séquences
  • Niveau Introductif

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Découvrir Edflex

Détails du cours

Déroulé

Week 1: The Earth as a living planet: The five big extinctions during Phanerozoic times; Volcanic fatalities; Volcanism in the Solar system; Volcanism on Earth; The essence of volcanism;

Week 2: The Earth as a living planet: Volcanoes on Earth: magnitudes and landforms; Explosive and effusive volcanism; Videos of Merapi and Etna volcanoes; Volcanic materials; mineralogy and fragment classification; Chemical and mineralogical classification; 

Week 3: Structure of molten silicates: Chemical composition; Stability and geological properties (an overview on viscosity/viscoelasticity; density, expansivity/compressibility; Volatiles solubilities, diffusivities, heat capacity, redox equilibria); 

Week 4: Dynamics of molten silicates: Glass and molten silicates; Molar heat, Enthalpy: Strain vs. time; Cooling vs. heating paths; Maxwell relations for viscoelasticity; Resistivity and viscosity; Relaxation times and implications for experiments;
 
Week 5: Relaxation in silicate melts: Longitudinal vs. shear viscosity; Glass transition; Quench rate, relaxation time and viscosity; The role of water content, water speciation, pressure and temperature; Details of water speciation from experimental data;

Week 6: Diffusion in silicate melts: water content and water speciation  (cont.); Diffusion in contrasting silicate melts; The role of temperature; Comparing diffusion of different elements; The role of pressure; Simplified Stokes-Einstein and Eyring equations; Relaxation times  (comparison between different compositions at different temperatures);

Week 7: Expansivity and compressibility in silicate melts: Partial molar volumes; Density: equation of state for liquid silicates; Density determinations and calculations above and below glass transition; Density models for anhydrous granitic system;

Week 8: Viscosity of silicate melts: Calibration of reaction kinetics for speciation (e.g. H2O); Prediction of glass transition: temperature, thermodynamic and kinetic; Methods of viscosity measurements; Arrhenian and non-Arrhenian plots; Viscosity-temperature relationships; Peraluminous and metaluminous (calcalkaline) melts; Adam Gibbs model: entropy of mixing; Multicomponent models with water and fluorine;

Week 9: Fragmentation of magmas: The role of crystals and bubbles; Bubble growth; Structural relaxation; Non-Newtonian effects; Viscous heating; Flow or blow: the volcanic dilemma; Fragmentation velocities; Experimental Volcanology at the LMU; Videos from the labs and scientific staff;

Week 10: Volcanic hazards: how to get information from volcanological maps; Impact and relevance; Volcanoes and Mankind; Hazards mitigation; Examples from the Vesuvius case; Video from Vesuvius with animations;

Prérequis

Aucun.

Intervenants

  • Donald Dingwell - Department of Earth and Environmental Sciences

Éditeur

As one of Europe's leading research universities, LMU Munich is committed to the highest international standards of excellence in research and teaching. Building on its 500-year-tradition of scholarship, LMU covers a broad spectrum of disciplines, ranging from the humanities and cultural studies through law, economics and social studies to medicine and the sciences.

Plateforme

Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Complétez cette ressource pour donner votre avis