University Chemistry: Molecular Foundations and Global Frontiers Part 1

Cours
en
Anglais
72 h
Ce contenu est noté 0 sur 5
Source
  • Sur www.edx.org
Conditions
  • À son rythme
  • Accès libre
  • Certificat payant
Plus d'informations
  • 24 séquences
  • Niveau Introductif

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Découvrir Edflex

Détails du cours

Déroulé

Chapter 1. Energy: Conceptual Foundation and Laws that Govern its Transformation

Recognizing various forms of energy and understanding the scientific principles involved in the transformations that take place between these energy categories is fundamental to scientific understanding at any level of inquiry. Energy is found in the form of molecular motion, electrical energy, nuclear energy, electromagnetic energy, kinetic energy of macroscopic objects, gravitational energy, etc. The scientific principles that govern energy at the molecular level are linked to the behavior of energy at the global level. This establishes a foundation defining the central importance of energy for each of the subsequent chapters.

Chapter 2. Atomic and Molecular Structure: Energy from Chemical Bonds

How is the energy contained in the chemical bond extracted to produce useful work at the molecular level? Why is virtually all of the energy contained in a chemical bond lost as heat under some circumstances, but is effectively channeled to build new and complex molecules in other instances? How is the chemical energy of one reaction coupled to subsequent chemical reactions leading to the formation of a desired chemical product? These questions are explored by first developing the concepts central to atomic structure and chemical bonding.

Chapter 3. Thermochemistry: Development of the First Law of Thermodynamics

The First Law of Thermodynamics is the law of conservation of energy: heat and work are both forms of energy. In any process, energy can be converted from one form to another, but it is never created nor destroyed. In order to understand and apply the First Law, we must develop a clear understanding of the distinction between temperature, heat, work and the thermal energy contained within the system under study. These ideas are developed quantitatively such that they can be applied to chemical reactions, heat engines, and phase changes.

Chapter 4. Entropy and the Second Law of Thermodynamics

Nature is driven by spontaneous processes, processes that proceed without external intervention. With our advancing understanding of energy, with the insight brought by the First Law of Thermodynamics, and with our ability to track energy transformations from highly organized forms of energy that inexorably cascade to disorganized thermal energy, comes a sharpened recognition that there are other factors that drive spontaneous processes in nature. This constitutes the imperative for understanding entropy.

Chapter 5. Equilibria and Free Energy

A chemical system in equilibrium, aA + bB ←→ cC + dD, represents an unchanging combination of macroscopic properties: concentrations, pressure, temperature, etc. There are no apparent changes with time. The equilibrium state thus determines the extent to which a reaction takes place. But at the molecular level, the situation is far different. In this section we quantitatively couple the concept of Gibbs Free Energy with the concept of chemical equilibrium.

Chapter 6. Equilibria in Solution

The role of proton transfer—the transfer of a hydrogen ion, H+, from one species to another, often involving water as a solvent—is a theme of broad importance. The proton, as we will see, organizes the molecular level structure of liquid water, controls life’s biochemical pathways, is held in delicate control in the blood of all organisms, constructs and deconstructs polymers, and aids in the synthesis of exquisite calcium containing structures at the intersection of organic and inorganic architectures in living systems. This section links the behavior of acids and bases to Gibbs Free Energy.

Chapter 7. Electrochemistry

The study of the union between chemistry and electricity—the flow of electrons driven spontaneously by Free Energy release in a chemical reaction—has provided a rich history of remarkable discoveries. These studies constitute the discipline of electrochemistry, a subject that has experienced a dramatic rebirth. That rebirth has been propelled by the emergence of energy production and storage as a dominant problem confronting both science and public policy. New developments in electric automobiles are linked to important developments to control the release of carbon to the atmosphere.

Prérequis

High-school algebra required; some familiarity with basic calculus is helpful but not required

Intervenants

James Anderson
Philip S. Weld Professor of Chemistry
Harvard University

Plateforme

EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.

EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.

Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.

Ce contenu est noté 4.5 sur 5
(aucun avis)
Ce contenu est noté 4.5 sur 5
(aucun avis)
Complétez cette ressource pour donner votre avis