link
Source : www.coursera.org
list
8 séquences
assignment
Niveau : Introductif
chat_bubble_outline
Langue : Chinois
card_giftcard
0 point
Avis de la communauté
Les infos clés
credit_card
Formation gratuite
timer
64 heures de cours
En résumé
The course extends the fundamental tools in "Machine Learning Foundations" to powerful and practical models by three directions, which includes embedding numerous features, combining predictive features, and distilling hidden features. [這門課將先前「機器學習基石」課程中所學的基礎工具往三個方向延伸為強大而實用的工具。這三個方向包括嵌入大量的特徵、融合預測性的特徵、與萃取潛藏的特徵。]
more_horiz
Lire plus
more_horiz
Lire moins
dns
Le programme
Each of the following items correspond to approximately one hour of video lecture. [以下的每個小項目對應到約一小時的線上課程]
Embedding Numerous Features [嵌入大量的特徵]
-- Linear Support Vector Machine [線性支持向量機]
-- Dual Support Vector Machine [對偶支持向量機]
-- Kernel Support Vector Machine [核型支持向量機]
-- Soft-Margin Support Vector Machine [軟式支持向量機]
-- Kernel Logistic Regression [核型羅吉斯迴歸]
-- Support Vector Regression [支持向量迴歸]
Combining Predictive Features [融合預測性的特徵]
-- Bootstrap Aggregation [自助聚合法]
-- Adaptive Boosting [漸次提昇法]
-- Decision Tree [決策樹]
-- Random Forest [隨機森林]
-- Gradient Boosted Decision Tree [梯度提昇決策樹]
Distilling Hidden Features [萃取隱藏的特徵]
-- Neural Network [類神經網路]
-- Deep Learning [深度學習]
-- Radial Basis Function Network [逕向基函數網路]
-- Matrix Factorization [矩陣分解]
Summary [總結]
Embedding Numerous Features [嵌入大量的特徵]
-- Linear Support Vector Machine [線性支持向量機]
-- Dual Support Vector Machine [對偶支持向量機]
-- Kernel Support Vector Machine [核型支持向量機]
-- Soft-Margin Support Vector Machine [軟式支持向量機]
-- Kernel Logistic Regression [核型羅吉斯迴歸]
-- Support Vector Regression [支持向量迴歸]
Combining Predictive Features [融合預測性的特徵]
-- Bootstrap Aggregation [自助聚合法]
-- Adaptive Boosting [漸次提昇法]
-- Decision Tree [決策樹]
-- Random Forest [隨機森林]
-- Gradient Boosted Decision Tree [梯度提昇決策樹]
Distilling Hidden Features [萃取隱藏的特徵]
-- Neural Network [類神經網路]
-- Deep Learning [深度學習]
-- Radial Basis Function Network [逕向基函數網路]
-- Matrix Factorization [矩陣分解]
Summary [總結]
record_voice_over
Les intervenants
- Hsuan-Tien Lin - 資訊工程學系 (Computer Science and Information Engineering)
store
Le concepteur

We firmly believe that open access to learning is a powerful socioeconomic equalizer. NTU is especially delighted to join other world-class universities on Coursera and to offer quality university courses to the Chinese-speaking population. We hope to transform the rich rewards of learning from a limited commodity to an experience available to all.
assistant
La plateforme

Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.
Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.
Vous êtes le concepteur de ce MOOC ?
keyboard_arrow_left
grade
keyboard_arrow_right
Intégrez le module d’évaluation