link Source :
list 8 séquences
assignment Niveau : Introductif
chat_bubble_outline Langue : Chinois
card_giftcard 512 points
Avis de la communauté
Voir l'avis

Les infos clés

credit_card Formation gratuite
timer 64 heures de cours

En résumé

Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. The course teaches the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。本課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。]

more_horiz Lire plus
more_horiz Lire moins

Le programme

Each of the following items correspond to approximately one hour of video lecture. [以下的每個小項目對應到約一小時的線上課程]

When Can Machines Learn? [何時可以使用機器學習]
-- The Learning Problem [機器學習問題]
-- Learning to Answer Yes/No [二元分類]
-- Types of Learning [各式機器學習問題]
-- Feasibility of Learning [機器學習的可行性]

Why Can Machines Learn? [為什麼機器可以學習]
-- Training versus Testing [訓練與測試]
-- Theory of Generalization [舉一反三的一般化理論]
-- The VC Dimension [VC 維度]
-- Noise and Error [

How Can Machines Learn? [機器可以怎麼樣學習]
-- Linear Regression [線性迴歸]
-- Linear `Soft' Classification [軟性的線性分類]
-- Linear Classification beyond Yes/No [二元分類以外的分類問題]
-- Nonlinear Transformation [非線性轉換]

How Can Machines Learn Better? [機器
-- Hazard of Overfitting [過度訓練的危險]
-- Preventing Overfitting I: Regularization [避免過度訓練一:控制調適]
-- Preventing Overfitting II: Validation
-- Three Learning Principles


Les intervenants

  • Hsuan-Tien Lin - 資訊工程學系 (Computer Science and Information Engineering)

Le concepteur

National Taiwan University
We firmly believe that open access to learning is a powerful socioeconomic equalizer. NTU is especially delighted to join other world-class universities on Coursera and to offer quality university courses to the Chinese-speaking population. We hope to transform the rich rewards of learning from a limited commodity to an experience available to all.

La plateforme


Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Vous êtes le concepteur de ce MOOC ?
Quelle note donnez-vous à cette ressource ?