list 6 séquences
assignment Niveau : Introductif
chat_bubble_outline Langue : Anglais
card_giftcard 192 points
Avis de la communauté
-
starstarstarstarstar

Les infos clés

credit_card Formation gratuite
verified_user Certification payante
timer 24 heures de cours

En résumé

In previous courses in the Specialization, we have discussed how to sequence and compare genomes. This course will cover advanced topics in finding mutations lurking within DNA and proteins. In the first half of the course, we would like to ask how an individual's genome differs from the "reference genome" of the species. Our goal is to take small fragments of DNA from the individual and "map" them to the reference genome. We will see that the combinatorial pattern matching algorithms solving this problem are elegant and extremely efficient, requiring a surprisingly small amount of runtime and memory. In the second half of the course, we will learn how to identify the function of a protein even if it has been bombarded by so many mutations compared to similar proteins with known functions that it has become barely recognizable. This is the case, for example, in HIV studies, since the virus often mutates so quickly that researchers can struggle to study it. The approach we will use is based on a powerful machine learning tool called a hidden Markov model. Finally, you will learn how to apply popular bioinformatics software tools applying hidden Markov models to compare a protein against a related family of proteins.

more_horiz Lire plus
more_horiz Lire moins
dns

Le programme

  • Week 1 - Week 1: Introduction to Read Mapping

    Welcome to our class! We are glad that you decided to join us.

    In this class, we will consider the following two central biological questions (the computational approaches needed to solve them are shown in parentheses):

    1. How Do We ...
    2. Week 2 - Week 2: The Burrows-Wheeler Transform

      Welcome to week 2 of the class!

      This week, we will introduce a paradigm called the Burrows-Wheeler transform; after seeing how it can be used in string compression, we will demonstrate that it is also the foundation of modern read-mapping algorithms...

    3. Week 3 - Week 3: Speeding Up Burrows-Wheeler Read Mapping

      Welcome to week 3 of class!

      Last week, we saw how the Burrows-Wheeler transform could be applied to multiple pattern matching. This week, we will speed up our algorithm and generalize it to the case that patterns have errors, which models the biolo...

    4. Week 4 - Week 4: Introduction to Hidden Markov Models

      Welcome to week 4 of class!

      This week, we will start examining the case of aligning sequences with many mutations -- such as related genes from different HIV strains -- and see that our problem formulation for sequence alignment is not adequate for ...

    5. Week 5 - Week 5: Profile HMMs for Sequence Alignment

      Welcome to week 5 of class!

      Last week, we introduced hidden Markov models. This week, we will see how hidden Markov models can be applied to sequence alignment with a profile HMM. We will then consider some advanced topics in this area, which are ...

    6. Week 6 - Week 6: Bioinformatics Application Challenge

      Welcome to the sixth and final week of class!

      This week brings our Application Challenge, in which we apply the HMM sequence alignment algorithms that we have developed.

record_voice_over

Les intervenants

Pavel Pevzner
Professor
Department of Computer Science and Engineering

Phillip Compeau
Visiting Researcher
Department of Computer Science & Engineering

store

Le concepteur

University of California, San Diego
UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory.
assistant

La plateforme

Coursera

Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Vous êtes le concepteur de ce MOOC ?
Quelle note donnez-vous à cette ressource ?
Contenu
0/5
Plateforme
0/5
Animation
0/5