Introduction to Probability and Data with R
link Source : www.coursera.org
list 10 séquences
assignment Niveau : Introductif
chat_bubble_outline Langue : Anglais
card_giftcard 640 points
Avis de la communauté
4.1
starstarstarstarstar
2 avis

Les infos clés

credit_card Formation gratuite
verified_user Certification payante
timer 80 heures de cours

En résumé

This course introduces you to the discipline of statistics as a science of understanding and analyzing data. You will learn how to effectively make use of data in the face of uncertainty: how to collect data, how to analyze data, and how to use data to make inferences and conclusions about real world phenomena.

more_horiz Lire plus
more_horiz Lire moins
dns

Le programme

Week 1: Unit 1 - Introduction to data
  • Part 1 – Designing studies
  • Part 2 – Exploratory data analysis
  • Part 3 – Introduction to inference via simulation
Week 2: Unit 2 - Probability and distributions
  • Part 1 – Defining probability
  • Part 2 – Conditional probability
  • Part 3 – Normal distribution
  • Part 4 – Binomial distribution
Week 3: Unit 3 - Foundations for inference
  • Part 1 – Variability in estimates and the Central Limit Theorem
  • Part 2 – Confidence intervals
  • Part 3 – Hypothesis tests
Week 4: Finish up Unit 3 + Midterm
  • Part 4 – Inference for other estimators
  • Part 5 - Decision errors, significance, and confidence
Week 5: Unit 4 - Inference for numerical variables
  • Part 1 – t-inference
  • Part 2 – Power
  • Part 3 – Comparing three or more means (ANOVA)
  • Part 4 – Simulation based inference for means
Week 6: Unit 5 - Inference for categorical variables
  • Part 1 – Single proportion
  • Part 2 – Comparing two proportions
  • Part 3 – Inference for proportions via simulation
  • Part 4 – Comparing three or more proportions (Chi-square)
Week 7: Unit 6 - Introduction to linear regression
  • Part 1 – Relationship between two numerical variables
  • Part 2 – Linear regression with a single predictor
  • Part 3 – Outliers in linear regression
  • Part 4 – Inference for linear regression
Week 8: Unit 7 - Multiple linear regression
  • Part 1 – Regression with multiple predictors
  • Part 2 – Inference for multiple linear regression
  • Part 3 – Model selection
  • Part 4 – Model diagnostics
Week 9: Review / catch-up week
  • Bayesian vs. frequentist inference
Week 10: Final exam
record_voice_over

Les intervenants

  • Mine Çetinkaya-Rundel - Department of Statistical Science
store

Le concepteur

Duke University
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
assistant

La plateforme

Coursera

Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Avis de la communauté
4.1 /5 Moyenne
starstarstarstarstar
1
starstarstarstarstar
1
starstarstarstarstar
0
starstarstarstarstar
0
starstarstarstarstar
0
Contenu
4.8/5
Plateforme
2.8/5
Animation
4.8/5
Le meilleur avis

Am truely impress with content, Platform and animation this site provides to learners. Looking forward to enrich my data analysis skills

le 16 septembre 2020
Vous êtes le concepteur de ce MOOC ?
Quelle note donnez-vous à cette ressource ?
Contenu
5/5
Plateforme
5/5
Animation
5/5
le 11 mai 2021
starstarstarstar

La certification n'est pas gratuite

le 16 septembre 2020
starstarstarstar

Am truely impress with content, Platform and animation this site provides to learners. Looking forward to enrich my data analysis skills