Les infos clés
En résumé
Learn both theory and application for basic methods that have been invented either for developing new concepts – principal components or clusters, or for finding interesting correlations – regression and classification. This is preceded by a thorough analysis of 1D and 2D data.
Le programme
Week 1. Intro: Examples of data and data analysis problems; visualization.
Week 2. 1D analysis. Feature scales. Histogram. Two common types of histograms: Gaussian and Power Law. Central values. Minkowski distance and data recovery view. Validation with Bootstrap.
Week 3-4. 2D analysis cases:
(Both quantitative: Scatter-plot, linear regression, correlation and determinacy coefficients: meaning and properties. Both nominal: Contingency table, Quetelet index, Pearson chi-squared coefficient, its double meaning and visualization).
Week 5-6. Learning multivariate correlations
(Bayes approach and Naïve Bayes classifier with a Bag-of-words text model; Decision trees and criteria for building them.)
Week 7. Principal components (PCA) and SVD
(SVD model behind PCA: student marks as the product of subject factor scores and subject loadings. Application to deriving a hidden underlying factor. Data visualization with PCA. Conventional PCA and data normalization issues.)
Week 8. Clustering with k-means
(K-Means iterations and K-Means features
K-Means criterion. Anomalous clusters and intelligent K-Means.)
Les intervenants
- Boris Mirkin - Department of Data Analysis and Artificial Intelligence
Le concepteur

La plateforme

Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.
Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.