Data Wrangling with MongoDB
list 8 séquences
assignment Niveau : Introductif
chat_bubble_outline Langue : Anglais
card_giftcard 0 point
Envie de partager ce MOOC dans votre entreprise ?
My Mooc
For Business
3.5 /5
Avis de la communauté
1 avis

Les infos clés

credit_card Formation gratuite

En résumé

In this course, we will explore how to wrangle data from diverse sources and shape it to enable data-driven applications. Some data scientists spend the bulk of their time doing this! Students will learn how to gather and extract data from widely used data formats. They will learn how to assess the quality of data and explore best practices for data cleaning. We will also introduce students to MongoDB, covering the essentials of storing data and the MongoDB query language together with exploratory analysis using the MongoDB aggregation framework. This is a great course for those interested in entry-level data science positions as well as current business/data analysts looking to add big data to their repertoire, and managers working with data professionals or looking to leverage big data. This course is also a part of our Data Analyst Nanodegree.

more_horiz Lire plus
more_horiz Lire moins

Le programme

Lesson 1: Data Extraction Fundamentals

- Assessing the Quality of Data - Intro to Tabular Formats - Parsing CSV - Parsing XLS with XLRD - Intro to JSON - Using Web APIs

Lesson 2: Data in More Complex Formats

- Intro to XML - XML Design Principles - Parsing XML - Web Scraping - Parsing HTML

Lesson 3: Data Quality

- What is Data Cleaning? - Sources of Dirty Data - Measuring Data Quality - A Blueprint for Cleaning - Auditing Validity - Auditing Accuracy - Auditing Completeness - Auditing Consistency - Auditing Uniformity

Lesson 4: Working with MongoDB

- Data Modelling in MongoDB - Introduction to PyMongo - Field Queries - Projection Queries - Getting Data into MongoDB - Using mongoimport - Operators like $gt, $lt, $exists, $regex - Querying Arrays and using $in and $all Operators - Changing entries: $update, $set, $unset

Lesson 5: Analyzing Data

- Examples of Aggregation Framework - The Aggregation Pipeline - Aggregation Operators: $match, $project, $unwind, $group - Multiple Stages Using a Given Operator

Lesson 6: Case Study - OpenStreetMap Data

- Using iterative parsing for large datafiles - Open Street Map XML Overview - Exercises around OpenStreetMap data - Final Project Instructions

Les intervenants

  • Shannon Bradshaw - Shannon is Director of Education at MongoDB, managing MongoDB University's in-person training and free online courses. Prior to joining MongoDB, Shannon was an Associate Professor of Computer Science at Drew University with research interests in user experience, information science, and the semantic web. For the past several years, Shannon has divided his time between academia and industry. He has trained software engineers at Goldman Sachs, designed text-retrieval systems at Morgan Stanley, and built many trading and analytics applications at boutique firms in the financial industry.

La plateforme

Udacity est une entreprise fondé par Sebastian Thrun, David Stavens, et Mike Sokolsky offrant cours en ligne ouvert et massif.

Selon Thrun, l'origine du nom Udacity vient de la volonté de l'entreprise d'être "audacieux pour vous, l'étudiant ". Bien que Udacity se concentrait à l'origine sur une offre de cours universitaires, la plateforme se concentre désormais plus sur de formations destinés aux professionnels.

Avis de la communauté
3.5 /5 Moyenne
Le meilleur avis

Test Com 1

le 8 novembre 2016
Vous êtes le concepteur de ce MOOC ?
Quelle note donnez-vous à cette ressource ?