Data Science in Real Life
date_range Débute le 20 mars 2017
event_note Se termine le 27 mars 2017
list 1 séquence
assignment Niveau : Introductif
label Informatique & Programmation
chat_bubble_outline Langue : Anglais
card_giftcard 0.6 point
- /5
Avis de la communauté
0 avis

Les infos clés

credit_card Formation gratuite
timer 1 heure de cours

En résumé

Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses. This is a focused course designed to rapidly get you up to speed on doing data science in real life. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to: 1, Describe the “perfect” data science experience 2. Identify strengths and weaknesses in experimental designs 3. Describe possible pitfalls when pulling / assembling data and learn solutions for managing data pulls. 4. Challenge statistical modeling assumptions and drive feedback to data analysts 5. Describe common pitfalls in communicating data analyses 6. Get a glimpse into a day in the life of a data analysis manager. The course will be taught at a conceptual level for active managers of data scientists and statisticians. Some key concepts being discussed include: 1. Experimental design, randomization, A/B testing 2. Causal inference, counterfactuals, 3. Strategies for managing data quality. 4. Bias and confounding 5. Contrasting machine learning versus classical statistical inference Course promo: Course cover image by Jonathan Gross. Creative Commons BY-ND

more_horiz Lire plus
more_horiz Lire moins

Le programme

  • Week 1 - Introduction, the perfect data science experience
    This course is one module, intended to be taken in one week. Please do the course roughly in the order presented. Each lecture has reading and videos. Except for the introductory lecture, every lecture has a 5 question quiz; get 4 out of 5 or better on the qui...

Le concepteur

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.

La plateforme

Coursera est une entreprise numérique proposant des formation en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Quelle note donnez-vous à cette ressource ?

Vous pourriez être intéressé par...