date_range Débute le 2 juin 2020
event_note Se termine le 19 août 2020
list 11 séquences
assignment Niveau : Avancé
chat_bubble_outline Langue : Anglais
card_giftcard 1848 points
Logo My Mooc Business

Ils choisissent Edflex pour développer les compétences en entreprise.

En savoir plus
Avis de la communauté
-
starstarstarstarstar

Les infos clés

credit_card Formation gratuite
timer 132 heures de cours

En résumé

edx prize nominee logo

This course is now part of two independent MITx MicroMasters programs. For both MicroMasters programs, learners will need to first enroll in and pass this course. However, each program will then require different final assessments for a course certificate toward the full MicroMasters credential:

1.MicroMasters in Data, Economics, and Development Policy (DEDP).

To pursue the DEDP MicroMasters credential, pass this course, create aMicroMasters in DEDP profile, and pass an additional in-person proctored exam.

To learn more about the DEDP program and how it integrates with MIT’s new blended Master’s degree, please visithttps://micromasters.mit.edu/dedp/.

The DEDP MicroMasters is part of edX’s free Online Campus program. Participating university affiliates can take DEDP MicroMasters courses free if you register before June 30th. If you are from a university participating in this edX opportunity,click here to redeem your coupon.

The DEDP MicroMasters is also part of the Workforce Recovery Acceleration Program. To apply for this program please click here.

2.MicroMasters in Statistics and Data Science (SDS).
To pursue the SDS MicoMasters credential, pass this course, and enroll in and pass the final assessment at14.310Fx Data Analysis in Social Sciences-Assessment on EdX.

Complete all 4 courses and the capstone exam in the SDS program to accelerate your path towards graduate studies at MIT or other universities. To learn more, please visithttps://micromasters.mit.edu/ds.

This statistics and data analysis course will introduce you to the essential notions of probability and statistics. We will cover techniques in modern data analysis: estimation, regression and econometrics, prediction, experimental design, randomized control trials (and A/B testing), machine learning, and data visualization. We will illustrate these concepts with applications drawn from real world examples and frontier research. Finally, we will provide instruction for how to use the statistical package R and opportunities for students to perform self-directed empirical analyses.

This course is designed for anyone who wants to learn how to work with data and communicate data-driven findings effectively.

Course Previews:

Our course previews are meant to give prospective learners the opportunity to get a taste of the content and exercises that will be covered in each course. If you are new to these subjects, or eager to refresh your memory, each course preview also includes some available resources. These resources may also be useful to refer to over the course of the semester.

A score of 60% or above in the course previews indicates that you are ready to take the course, while a score below 60% indicates that you should further review the concepts covered before beginning the course.

Please use the this link to access the course preview.

  • Intuition behind probability and statistical analysis
  • How to summarize and describe data
  • A basic understanding of various methods of evaluating social programs
  • How to present results in a compelling and truthful way
  • Skills and tools for using R for data analysis

more_horiz Lire plus
more_horiz Lire moins
report_problem

Les prérequis

No prior preparation in probability and statistics is required, but familiarity with algebra and calculus is assumed.

dns

Le programme

14.310x – Data Analysis for Social Scientists

Week One: Introduction
Week Two: Fundamentals of Probability, Random Variables, Joint Distributions and Collecting Data
Week Three: Describing Data, Joint and Conditional Distributions of Random Variables
Week Four: Functions and Moments of a Random Variables & Intro to Regressions
Week Five: Special Distributions, the Sample Mean, the Central Limit Theorem
Week Six: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing
Week Seven: Causality, Analyzing Randomized Experiments, & Nonparametric Regression
Week Eight: Single and Multivariate Linear Models
Week Nine: Practical Issues in Running Regressions, and Omitted Variable Bias
Week Ten: Endogeneity, Instrumental Variables, and Experimental Design
Week Eleven: Intro to Machine Learning and Data Visualization
Optional: Writing an Empirical Paper

record_voice_over

Les intervenants

Esther Duflo
Abdul Latif Jameel Professor of Poverty Alleviation and Development Economics in the Department of Economics, winner of the 2019 Nobel Prize in Economic Sciences
MIT

Sara Fisher Ellison
Senior Lecturer, Economics
MIT

store

Le concepteur

MIT

Le Massachusetts Institute of Technology (MIT), en français Institut de technologie du Massachusetts, est un institut de recherche américain et une université, spécialisé dans les domaines de la science et de la technologie. Situé à Cambridge, dans l'État du Massachusetts, à proximité immédiate de Boston, au nord-est des États-Unis, le MIT est souvent considéré comme une des meilleures universités mondiales.

Il édite la Technology Review, une revue scientifique consacrée aux sciences de l'ingénieur et à l'innovation.

assistant

La plateforme

Edx

EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.

EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.

Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.

Vous êtes le concepteur de ce MOOC ?
Quelle note donnez-vous à cette ressource ?
Contenu
0/5
Plateforme
0/5
Animation
0/5