Big Data Fundamentals
list 10 séquences
assignment Niveau : Intermédiaire
chat_bubble_outline Langue : Anglais
card_giftcard 60 points
Envie de partager ce MOOC dans votre entreprise ?
My Mooc
For Business
- /5
Avis de la communauté
0 avis

Les infos clés

credit_card Formation gratuite
verified_user Certification payante
timer 80 heures de cours

En résumé

Organizations now have access to massive amounts of data and it’s influencing the way they operate. They are realizing in order to be successful they must leverage their data to make effective business decisions.

In this course, part of the Big Data MicroMasters program, you will learn how big data is driving organisational change and the key challenges organizations face when trying to analyse massive data sets.

You will learn fundamental techniques, such as data mining and stream processing. You will also learn how to design and implement PageRank algorithms using MapReduce, a programming paradigm that allows for massive scalability across hundreds or thousands of servers in a Hadoop cluster. You will learn how big data has improved web search and how online advertising systems work.

By the end of this course, you will have a better understanding of the various applications of big data methods in industry and research.

  • Knowledge and application of MapReduce
  • Understanding the rate of occurrences of events in big data
  • How to design algorithms for stream processing and counting of frequent elements in Big Data
  • Understand and design PageRank algorithms
  • Understand underlying random walk algorithms

more_horiz Lire plus
more_horiz Lire moins
report_problem

Les prérequis

Candidates interested in pursuing the MicroMasters program in Big Data are advised to complete Programming for Data Science and Computational Thinking and Big Data before undertaking this course.

dns

Le programme

Section 1: The basics of working with big data
Understand the four V’s of Big Data (Volume, Velocity, and Variety); Build models for data; Understand the occurrence of rare events in random data. 

Section 2: Web and social networks
Understand characteristics of the web and social networks; Model social networks; Apply algorithms for community detection in networks. 

Section 3: Clustering big data
Clustering social networks; Apply hierarchical clustering; Apply k-means clustering. 

Section 4: Google web search
Understand the concept of PageRank; Implement the basic; PageRank algorithm for strongly connected graphs; Implement PageRank with taxation for graphs that are not strongly connected. 

Section 5: Parallel and distributed computing using MapReduce
Understand the architecture for massive distributed and parallel computing; Apply MapReduce using Hadoop; Compute PageRank using MapReduce. 

Section 6: Computing similar documents in big data
Measure importance of words in a collection of documents; Measure similarity of sets and documents; Apply local sensitivity hashing to compute similar documents. 

Section 7: Products frequently bought together in stores
Understand the importance of frequent item sets; Design association rules; Implement the A-priori algorithm. 

Section 8: Movie and music recommendations
Understand the differences of recommendation systems; Design content-based recommendation systems; Design collaborative filtering recommendation systems. 

Section 9: Google's AdWordsTM System
Understand the AdWords System; Analyse online algorithms in terms of competitive ratio; Use online matching to solve the AdWords problem. 

Section 10: Mining rapidly arriving data streams
Understand types of queries for data streams; Analyse sampling methods for data streams; Count distinct elements in data streams; Filter data streams.
record_voice_over

Les intervenants

Frank Neumann
Professor, School of Computer Science
University of Adelaide

Vahid Roostapour
PhD Student, School of Computer Science
University of Adelaide

Aneta Neumann
Postgraduate Researcher, School of Computer Science
University of Adelaide

Wanru (Kelly) Gao
Lecturer, School of Computer Science
University of Adelaide

store

Le concepteur

University of Adelaide
assistant

La plateforme

EdX est une plateforme d'apprentissage en ligne (dite FLOT ou MOOC). Elle héberge et met gratuitement à disposition des cours en ligne de niveau universitaire à travers le monde entier. Elle mène également des recherches sur l'apprentissage en ligne et la façon dont les utilisateurs utilisent celle-ci. Elle est à but non lucratif et la plateforme utilise un logiciel open source.

EdX a été fondée par le Massachusetts Institute of Technology et par l'université Harvard en mai 2012. En 2014, environ 50 écoles, associations et organisations internationales offrent ou projettent d'offrir des cours sur EdX. En juillet 2014, elle avait plus de 2,5 millions d'utilisateurs suivant plus de 200 cours en ligne.

Les deux universités américaines qui financent la plateforme ont investi 60 millions USD dans son développement. La plateforme France Université Numérique utilise la technologie openedX, supportée par Google.

Vous êtes le concepteur de ce MOOC ?
Quelle note donnez-vous à cette ressource ?
Contenu
0/5
Plateforme
0/5
Animation
0/5